Matryoshka Representation Learning (MRL) 项目使用说明
1. 项目目录结构及介绍
MRL 项目目录结构如下:
MRL/
├── .github/ # GitHub 工作流配置
├── images/ # 存储相关图像文件
├── inference/ # 模型推理相关脚本
├── model_analysis/ # 模型分析相关Jupyter笔记本
├── retrieval/ # 图像检索相关脚本
├── tests/ # 测试相关脚本
├── train/ # 模型训练相关脚本
├── .gitignore # Git 忽略文件
├── LICENSE # 项目许可证
├── MRL.py # Matryoshka Representation Learning 的主要实现
├── README.md # 项目说明文件
├── __init__.py # 初始化文件
├── requirements.dev.txt # 开发环境依赖文件
├── requirements.txt # 生产环境依赖文件
└── utils.py # 实用工具函数
.github/
: 包含项目的 GitHub Actions 工作流文件,用于自动化处理如代码审查、测试等任务。images/
: 存储项目所需的图像文件。inference/
: 包含推理脚本,用于对训练好的模型进行性能评估。model_analysis/
: 包含用于模型分析的 Jupyter 笔记本,如 GradCAM 图像、模型级联等。retrieval/
: 包含图像检索相关脚本。tests/
: 包含单元测试和其他测试脚本。train/
: 包含训练模型所需的脚本和配置文件。.gitignore
: 指定 Git 忽略的文件和目录。LICENSE
: 项目使用的许可证信息。MRL.py
: 包含 Matryoshka Representation Learning 的核心代码。README.md
: 项目的自述文件,提供项目的基本信息和说明。__init__.py
: Python 包的初始化文件。requirements.dev.txt
: 开发环境的依赖项列表。requirements.txt
: 生产环境的依赖项列表。utils.py
: 包含项目通用的工具函数。
2. 项目的启动文件介绍
项目的启动主要是通过 train/
目录下的 train_imagenet.py
脚本进行的。这个脚本负责初始化模型、加载数据集、设置训练参数和启动训练过程。
启动训练的基本命令如下:
python train_imagenet.py --config-file rn50_configs/rn50_40_epochs.yaml
这里,--config-file
参数指定了训练配置文件的位置。
3. 项目的配置文件介绍
项目的配置文件位于 train/rn50_configs/
目录下,其中包含了不同训练阶段的配置文件。例如,rn50_40_epochs.yaml
文件定义了 ResNet50 模型训练40个周期的配置。
配置文件通常包括以下部分:
data
: 数据集的路径和加载参数。model
: 模型的配置,如模型架构、损失函数、优化器等。training
: 训练过程的配置,如学习率、批大小、训练集和验证集等。logging
: 日志记录的配置。
配置文件使用 YAML 格式,可以通过修改这些文件来调整模型的训练过程和模型参数。