开源项目安装与配置指南

开源项目安装与配置指南

rag-using-langchain-amazon-bedrock-and-opensearch RAG with langchain using Amazon Bedrock and Amazon OpenSearch rag-using-langchain-amazon-bedrock-and-opensearch 项目地址: https://gitcode.com/gh_mirrors/ra/rag-using-langchain-amazon-bedrock-and-opensearch

1. 项目基础介绍

本项目是一个开源示例,展示了如何使用Retrieval Augmented Generation (RAG) 方法,结合Amazon Bedrock和Amazon OpenSearch来实现文本嵌入和增强型生成。它主要用于辅助提示工程任务,以从大型语言模型(LLM)获得更准确的响应。该项目主要使用Python编程语言。

2. 关键技术和框架

  • Retrieval Augmented Generation (RAG): 一种结合检索和生成的方法,用于增强自然语言处理模型的能力。
  • Amazon Bedrock: 提供基础模型服务的平台,本项目使用它来生成文本嵌入。
  • Amazon OpenSearch: 用于存储和检索文本嵌入的搜索和分析引擎。
  • LangChain: 一个用于连接LLM和向量数据库的工具链。
  • Terraform: 用于创建和管理云基础设施的开源工具。

3. 准备工作与安装步骤

准备工作

  • 确保系统中已安装Python 3.11.4版本。
  • 安装virtualenv来创建一个干净的环境:pip install virtualenv
  • 创建并激活虚拟环境:python -m virtualenv venvsource ./venv/bin/activate
  • 安装所需依赖:pip install -r requirements.txt
  • 安装Terraform:brew tap hashicorp/tapbrew install hashicorp/tap/terraform
  • 模型访问页面启用你想要使用的基础模型。

安装步骤

  1. 初始化Terraform

    • 切换到terraform目录下:cd ./terraform
    • 初始化Terraform配置:terraform init
  2. 创建OpenSearch集群

    • 应用Terraform配置来创建OpenSearch集群:terraform apply -auto-approve
    • 注意:这个集群仅用于测试,其端点是公开的。
  3. 加载数据到OpenSearch

    • 使用脚本将数据加载到OpenSearch中:python load-data-to-opensearch.py --recreate 1 --early-stop 1
    • 可选参数:
      • --recreate:重建OpenSearch中的索引。
      • --early-stop:仅加载100个嵌入文档到OpenSearch中。
      • --index:使用不同于默认的索引名。
      • --region:如果你不在默认的us-east-1区域,可以指定其他区域。
      • --multi-tenant:使用多租户模式,将数据加载到带有租户ID的索引中。
  4. 使用RAG查询LLM

    • 执行脚本查询LLM模型:python ask-bedrock-with-rag.py --ask "你的问题在这里"
    • 可选参数:
      • --index:使用不同的索引名。
      • --region:指定不同的区域。
      • --bedrock-model-id:选择不同于默认的模型。
      • --tenant-id:仅过滤特定的租户ID。
  5. 清理资源

    • 删除Terraform创建的资源:cd ./terraformterraform destroy
    • 当提示确认时,输入yes并按回车确认。

通过以上步骤,你可以成功安装和配置该项目,开始使用RAG方法与Amazon Bedrock和OpenSearch进行文本嵌入和增强型生成。

rag-using-langchain-amazon-bedrock-and-opensearch RAG with langchain using Amazon Bedrock and Amazon OpenSearch rag-using-langchain-amazon-bedrock-and-opensearch 项目地址: https://gitcode.com/gh_mirrors/ra/rag-using-langchain-amazon-bedrock-and-opensearch

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/a1799e63815c 《妙趣横生的算法(C语言实现)》是一本适合不同层次读者的书籍。对于算法初学者来说,它是入门教程;对于学过C语言程序设计的人,是进一步提升的读物;对于有经验的程序设计人员,可作为巩固和提高编程水平、查阅算法实现和数据结构知识的参考;对准备参加相关面试的读者,也能提供帮助。其最大特色是实例丰富、题材新颖有趣、实用性强,将理论融入实践,旨在帮助读者理解算法,提升C语言编程能力,培养编程兴趣,巩固C语言知识。 全书分两部分共10章。第一部分为基础篇,第1章介绍数据结构基础,包括顺序表、链表、栈、队列、树结构、图结构等的定义、操作及实例分析。第2章讲解常用的查找排序方法,如顺序查找、折半查找、直接插入排序、选择排序等。第3章阐述常用的算法思想,如穷举法、递归分治、贪心算法、回溯法、数值概率算法等。 第二部分为编程实例解析。第4章是编程基本功,涉及字符类型统计、ASCII码计算、嵌套if-else语句、switch语句译码器、闰年判断、指针变量作参数、矩阵运算、位运算、文件读写、程序运行时间记录、进制转化、特殊图案打印等内容。第5章和第6章为数学趣题,包括舍罕王的失算、最大公约数最小公倍数、歌德巴赫猜想、三色球问题、百钱买百鸡问题、回文数字判断、填数字游戏求解、新郎和新娘、爱因斯坦的阶梯问题、水仙花数寻找、猴子吃桃问题、兔子产仔问题、质因数分解等。第7章是数据结构趣题,如顺序表就地逆置、动态数列排序、链表归并、约瑟夫环、进制转换器、回文字符串判定、括号匹配等。第8章为数值计算问题,包括递推化梯形法求定积分、低阶定积分求解、迭代法开平方、牛顿法解方程、欧拉方法求解微分方程等。第9章是综合题,如破碎的砝码、24点问题、马踏棋盘、0-1背包问题、八皇后问题求解、文件加密解密系统等。第10章为算法设
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杭战昀Grain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值