Awesome Matchem Datasets 使用教程

Awesome Matchem Datasets 使用教程

awesome-matchem-datasets awesome-matchem-datasets 项目地址: https://gitcode.com/gh_mirrors/aw/awesome-matchem-datasets

1. 项目介绍

Awesome Matchem Datasets 是一个开源项目,它是一个关于材料科学和化学领域最有用数据集的精选列表,用于机器学习和AI基础模型的训练。这个项目包含了实验数据、计算数据和从文献中挖掘的数据集,优先考虑开放获取资源和社区贡献。

2. 项目快速启动

要开始使用 Awesome Matchem Datasets,请按照以下步骤操作:

# 克隆项目仓库
git clone https://github.com/blaiszik/awesome-matchem-datasets.git

# 进入项目目录
cd awesome-matchem-datasets

# 查看README文件以获取更多信息
cat README.md

README.md 文件中,你可以找到关于如何浏览数据集、下载数据集以及如何贡献你的数据集的详细信息。

3. 应用案例和最佳实践

以下是一些使用 Awesome Matchem Datasets 的应用案例和最佳实践:

  • 数据探索:使用提供的表格来探索不同领域或数据类型的数据集。你可以通过质量、大小和适用于机器学习模型的特性来排序和筛选数据集。
  • 数据下载:点击 "access links" 按钮来访问或下载你感兴趣的数据集。
  • 数据贡献:如果你想要添加一个新的数据集或改善元数据,可以复制仓库,编辑相应的数据集列表或添加新的条目,然后提交一个包含简短描述和来源的pull request。

4. 典型生态项目

以下是几个与 Awesome Matchem Datasets 相关的典型生态项目:

  • Materials Project:提供超过50万种无机化合物的计算数据。
  • Open Catalyst Project:包含超过120万次表面催化的放松计算。
  • NOMAD Repository:一个超过1900万次计算的材料科学数据存储库。
  • Crystallography Open Database:一个公开的晶体结构数据库,包含超过52万条记录。

通过结合使用这些项目,研究人员和开发者可以推动材料科学和化学领域的AI应用发展。

awesome-matchem-datasets awesome-matchem-datasets 项目地址: https://gitcode.com/gh_mirrors/aw/awesome-matchem-datasets

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石玥含Lane

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值