Awesome Matchem Datasets 使用教程
1. 项目介绍
Awesome Matchem Datasets 是一个开源项目,它是一个关于材料科学和化学领域最有用数据集的精选列表,用于机器学习和AI基础模型的训练。这个项目包含了实验数据、计算数据和从文献中挖掘的数据集,优先考虑开放获取资源和社区贡献。
2. 项目快速启动
要开始使用 Awesome Matchem Datasets,请按照以下步骤操作:
# 克隆项目仓库
git clone https://github.com/blaiszik/awesome-matchem-datasets.git
# 进入项目目录
cd awesome-matchem-datasets
# 查看README文件以获取更多信息
cat README.md
在 README.md
文件中,你可以找到关于如何浏览数据集、下载数据集以及如何贡献你的数据集的详细信息。
3. 应用案例和最佳实践
以下是一些使用 Awesome Matchem Datasets 的应用案例和最佳实践:
- 数据探索:使用提供的表格来探索不同领域或数据类型的数据集。你可以通过质量、大小和适用于机器学习模型的特性来排序和筛选数据集。
- 数据下载:点击 "access links" 按钮来访问或下载你感兴趣的数据集。
- 数据贡献:如果你想要添加一个新的数据集或改善元数据,可以复制仓库,编辑相应的数据集列表或添加新的条目,然后提交一个包含简短描述和来源的pull request。
4. 典型生态项目
以下是几个与 Awesome Matchem Datasets 相关的典型生态项目:
- Materials Project:提供超过50万种无机化合物的计算数据。
- Open Catalyst Project:包含超过120万次表面催化的放松计算。
- NOMAD Repository:一个超过1900万次计算的材料科学数据存储库。
- Crystallography Open Database:一个公开的晶体结构数据库,包含超过52万条记录。
通过结合使用这些项目,研究人员和开发者可以推动材料科学和化学领域的AI应用发展。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考