单张图像去雨技术:SPANet项目教程

单张图像去雨技术:SPANet项目教程

SPANet Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) SPANet 项目地址: https://gitcode.com/gh_mirrors/sp/SPANet

1. 项目介绍

SPANet(Spatial Attentive Single-Image Deraining)是一种基于深度学习的单张图像去雨技术。该技术能够从被雨滴干扰的图像中移除雨痕,恢复图像的原始清晰度。SPANet通过其独特的空间注意力网络结构,能够有效地识别并去除图像中的雨滴 streaks,从而提高图像质量,适用于户外视觉任务中。

本项目提供了一个包含训练和测试数据集的完整环境,以及相应的PyTorch实现代码。SPANet在CVPR 2019上发表,展示了其在去雨领域的优异性能。

2. 项目快速启动

环境准备

  • Python 3.6
  • PyTorch == 0.4.1
  • cupy
  • opencv-python
  • TensorBoardX
  • progressbar2
  • scikit-image
  • ffmpeg >= 4.0.1
  • python-ffmpeg

克隆项目

git clone https://github.com/stevewongv/SPANet.git
cd SPANet

训练模型

首先,下载训练数据集(约44GB)并解压到代码文件夹中。具体步骤请参考Train_Dataset_README.md

然后,开始训练:

python main.py -a train -m latest

测试模型

下载测试数据集(约455MB)并解压到代码文件夹中。具体步骤请参考Test_Dataset_README.md

进行测试:

python main.py -a test -m latest

3. 应用案例和最佳实践

  • 数据增强:为了提高模型的泛化能力,可以在训练过程中使用数据增强技术,如随机裁剪、翻转等。
  • 模型微调:对于特定的应用场景,可以使用少量目标数据对预训练模型进行微调,以获得更好的去雨效果。
  • 性能评估:使用PSNR和SSIM等指标对去雨效果进行定量评估,确保模型性能达到预期。

4. 典型生态项目

  • 户外监控系统:在户外监控场景中,雨水经常会干扰摄像头捕获的图像。利用SPANet可以实时清除雨痕,提高监控画面的清晰度。
  • 自动驾驶系统:自动驾驶车辆依赖各种传感器和摄像头进行环境感知。在雨天,SPANet可以帮助车辆更好地识别道路情况,提升行驶安全性。

SPANet Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) SPANet 项目地址: https://gitcode.com/gh_mirrors/sp/SPANet

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石葵铎Eva

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值