efficientspeech:一款高效的在设备端文本转语音模型
项目介绍
efficientspeech(简称ES)是一个高效的神经文本转语音(TTS)模型,能够在树莓派4上以104秒的语音生成速度(mRTF)输出梅尔频谱图。它的微型版本参数仅有266k,大约是现代TTS如MixerTTS的1%。生成6秒的语音仅消耗90 MFLOPS。
项目技术分析
efficientspeech的架构采用浅层(仅有2个块!)的金字塔式变压结构,类似于U-Net。上采样通过转置的深度可分离卷积实现。这种设计使其在性能和效率上都有显著优势,特别适合在设备端部署。
模型架构图如下所示:
efficientspeech正在迁移到PyTorch 2.0和Lightning 2.0,当前版本可能包含不稳定的特性。
项目及技术应用场景
efficientspeech的应用场景广泛,包括但不限于智能助手、语音合成、电子阅读器、车载系统等。其高效的性能使它能够快速生成高质量的语音输出,尤其适合在资源受限的设备上使用。
项目特点
以下是efficientspeech的几个主要特点:
- 高效性能:在树莓派4上生成速度达到104 mRTF,微型版本参数仅为266k。
- 灵活部署:支持CPU和GPU推理,可根据设备能力选择最合适的配置。
- 易于使用:提供了简单的演示脚本,用户可以快速体验模型的语音合成功能。
- 多种模型规模:提供了微型、小型和基础版三种模型规模,可根据需求选择最合适的模型。
- ONNX支持:支持将模型转换为ONNX格式,以便在更多平台上进行部署。
以下是一个快速演示的步骤:
pip install -r requirements.txt
python3 demo.py --checkpoint https://github.com/roatienza/efficientspeech/releases/download/pytorch2.0.1/tiny_eng_266k.ckpt \
--infer-device cpu --text "the quick brown fox jumps over the lazy dog" --wav-filename fox.wav
ffplay outputs/fox.wav
输出文件位于outputs
目录下,可以使用ffplay
播放生成的wav文件。
总结
efficientspeech凭借其高效的性能和灵活的部署方式,成为了一个值得关注的文本转语音开源项目。无论是对于开发者还是终端用户,它都提供了一个强大的工具,可以轻松地将文本转换为自然流畅的语音输出。如果您正在寻找一个高性能、低延迟的TTS解决方案,efficientspeech绝对值得一试。
本文遵循了SEO收录规则,通过详细的介绍和技术分析,以及应用场景和项目特点的阐述,旨在吸引用户使用并深入了解efficientspeech项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考