PoseNet Sketchbook开源项目使用教程
1. 项目介绍
PoseNet Sketchbook 是由 Google Creative Lab 开发的一系列开源、互动式网络实验项目。该项目利用 PoseNet(基于 tensorflow.js 运行)来探索运动与机器之间的艺术可能性。这个项目不是一个旨在持续演进的库或代码仓库,而是一个记录了 Body, Movement, Language 项目起点的档案。用户可以将这个代码集合作为创建自己 PoseNet 实验的起点。
2. 项目快速启动
首先,您需要克隆或下载这个仓库。具体操作请参考以下步骤:
# 克隆仓库到本地
git clone https://github.com/googlecreativelab/posenet-sketchbook.git
# 进入项目文件夹
cd posenet-sketches
# 安装依赖
yarn
# 启动开发服务器
yarn watch
启动后,开发服务器将在 localhost:1234
上运行。
3. 应用案例和最佳实践
应用案例
- 基本示例:展示 PoseNet 如何解释您的姿态。
- 运动乘数:探讨如何让过去的运动延续。
- 文字拖尾:展示运动历史如何影响屏幕上的文字。
- 形状转换器:探讨如何将运动转化为新的抽象形式。
- 拼贴创作:展示各种元素如何拼贴来重新创建屏幕上的图像。
- 身体转录器:探讨身体动作与屏幕上文字的关系。
- 色彩映射器:展示如何使用身体位置作为控制器。
- 图像映射器:探讨身体位置如何展现和突出内容。
- 音频控制器:展示身体位置如何操纵音频体验。
最佳实践
- 使用
PoseDetection.js
封装类来处理 PoseNet 数据。 - 每个草图都包含在 'sketches' 文件夹中。
- 使用
index.html
来设置页面结构。 - 使用
style.css
来定义样式。 - 使用
assets/
文件夹来存放缩略图、GIF 和其他资源。 - 使用
js/
文件夹来存放源代码。 main.js
负责设置相机、加载视频并初始化 Pose Detection 和草图。sketch.js
是草图的核心,包含了初始化画布大小和绘制循环等。
4. 典型生态项目
目前,PoseNet Sketchbook 的生态系统包括以下项目:
- PoseNet:用于姿态检测的 TensorFlow.js 库。
- tensorflow.js:TensorFlow 的 JavaScript 版本,用于在浏览器中运行机器学习模型。
这些项目共同构成了一个强大的网络互动艺术开发环境,开发者可以在此基础上进一步探索和创作。