Silero VAD 开源项目教程
项目地址:https://gitcode.com/gh_mirrors/si/silero-vad
项目介绍
Silero VAD 是一个预训练的企业级语音活动检测器(Voice Activity Detector),由 snakers4 团队开发并开源在 GitHub 上。该项目支持多种语言和不同领域的音频,具有灵活的采样率(8000 Hz 和 16000 Hz),并且可以在 PyTorch 和 ONNX 运行时环境中运行。Silero VAD 采用 MIT 许可证发布,无需注册或密钥,适用于 IoT、边缘计算、移动应用等多种场景。
项目快速启动
安装
首先,通过 pip 安装 Silero VAD:
pip install silero-vad
使用示例
以下是一个简单的 Python 代码示例,展示如何加载 Silero VAD 模型并检测语音活动:
from silero_vad import load_silero_vad, read_audio, get_speech_timestamps
# 加载 Silero VAD 模型
model = load_silero_vad()
# 读取音频文件
wav = read_audio('example.wav')
# 获取语音时间戳
speech_timestamps = get_speech_timestamps(wav, model)
print(speech_timestamps)
应用案例和最佳实践
数据清洗和准备
Silero VAD 可以用于自动检测和分割音频数据中的语音段,从而进行数据清洗和预处理,提高语音识别模型的训练质量。
电话和呼叫中心自动化
在电话和呼叫中心自动化中,Silero VAD 可以帮助识别通话中的语音活动,从而实现自动录音、语音转写和对话分析。
语音助手和机器人
Silero VAD 可以集成到语音助手和机器人中,用于实时检测用户的语音输入,提高交互的自然性和响应速度。
典型生态项目
faster-whisper
Silero VAD 已被集成到 faster-whisper 项目中,用于在将音频输入到 Whisper 语音识别模型之前,检测和去除音频中的静音段,从而提高识别速度和准确性。
ailia SDK
Silero VAD 支持与 ailia SDK 结合使用,通过以下命令创建一个去除静音段的音频文件:
python3 silero-vad.py --input example.wav --output only_speech.wav
请注意,Silero VAD 需要 ailia SDK 1.2 或更高版本。
通过以上教程,您可以快速了解和使用 Silero VAD 开源项目,并将其应用于各种语音处理场景中。