DisCo 项目使用教程
1. 项目目录结构及介绍
DisCo 项目的目录结构如下:
DisCo/
├── annotator/ # 注释器相关文件
├── config/ # 配置文件
├── dataset/ # 数据集相关文件
├── demo_data/ # 示例数据
├── figures/ # 项目图像文件
├── tool/ # 工具类文件
├── tsv_example/ # TSV文件示例
├── utils/ # 工具函数文件
├── .DS_Store
├── .gitignore
├── LICENSE
├── PREPRO.md # 数据预处理指南
├── README.md # 项目说明文件
├── agent.py # 主程序文件
├── finetune_sdm_yaml.py # 微调配置文件生成脚本
├── gen_eval.sh # 评估脚本
├── gen_eval_tm.sh # 评估脚本(带时间模块)
├── human_img_edit_gradio.ipynb # Jupyter笔记本,用于图像编辑演示
├── requirements.txt # 项目依赖文件
annotator/
: 包含用于注释的脚本和文件。config/
: 包含项目的配置文件,用于设置训练、评估等参数。dataset/
: 存放数据集和与数据相关的处理代码。demo_data/
: 包含用于演示的数据。figures/
: 存放项目相关的图像和图表。tool/
: 包含一些工具类代码。tsv_example/
: 包含TSV文件格式的示例。utils/
: 包含项目中常用的工具函数。.DS_Store
: Mac系统的文件元数据。.gitignore
: 指定Git忽略的文件和目录。LICENSE
: 项目的许可协议文件。PREPRO.md
: 提供数据预处理的方法和指南。README.md
: 详细介绍项目的信息和使用方法。agent.py
: 项目的主要程序,用于训练和评估模型。finetune_sdm_yaml.py
: 用于生成微调配置文件的脚本。gen_eval.sh
: 用于生成评估结果的脚本。gen_eval_tm.sh
: 用于生成带时间模块的评估结果的脚本。human_img_edit_gradio.ipynb
: 一个Jupyter笔记本,用于展示图像编辑的演示。requirements.txt
: 列出项目依赖的Python库。
2. 项目的启动文件介绍
项目的启动主要是通过 agent.py
文件来完成的。该文件包含了项目的主要逻辑,包括模型的训练、评估以及生成舞蹈动作等。以下是一个基本的启动命令:
python agent.py --config_path path/to/config/file --mode train
这里 --config_path
参数用于指定配置文件的路径,而 --mode
参数可以设置为 train
、eval
或 generate
等模式,用于指定程序运行的模式。
3. 项目的配置文件介绍
配置文件存放在 config/
目录中,通常是以 .yaml
或 .py
为后缀的文件。这些文件包含了项目的所有配置信息,如数据集路径、训练参数、模型参数等。一个配置文件的基本结构如下:
# 配置文件示例
train:
batch_size: 32
learning_rate: 0.001
num_epochs: 100
data:
train_data_path: path/to/train/data
val_data_path: path/to/val/data
model:
name: DiscoModel
params:
hidden_size: 1024
num_layers: 2
在这个配置文件中,我们定义了训练时的批大小、学习率和迭代次数,同时指定了训练和验证数据集的路径,以及模型的一些参数。
使用配置文件时,需要通过命令行参数指定配置文件的路径,如:
python agent.py --config_path path/to/config/file --mode train
这样,agent.py
文件就会根据提供的配置文件来设置和运行项目。