WordArt项目使用教程
1. 项目目录结构及介绍
WordArt项目是一个用于艺术文本识别的开源项目。项目的目录结构如下:
configs
:存放配置文件,包括训练、测试等不同阶段的配置。demo
:示例代码和图像,用于展示如何使用模型进行预测。docker
:Docker相关文件,用于容器化项目。docs
:项目文档。mmocr
:与MMOCR库相关的代码。requirements
:项目依赖的Python包列表。resources
:项目所需的资源文件,如图像数据集等。tests
:单元测试代码。tools
:项目工具脚本,如训练、测试脚本等。.codespellrc
:codespell配置文件。.coveragerc
:coverage配置文件。.owners.yml
:项目贡献者名单。.pre-commit-config.yaml
:pre-commit钩子配置。.pylintrc
:pylint配置文件。CITATION.cff
:项目引用信息。LICENSE
:项目许可证。MANIFEST.in
:打包时包含的文件列表。README.md
:项目自述文件。README_zh-CN.md
:项目自述文件中文版。model-index.yml
:模型索引文件。requirements.txt
:项目依赖的Python包列表。setup.cfg
:项目设置文件。setup.py
:项目安装脚本。
2. 项目的启动文件介绍
项目的启动主要是通过tools
目录下的脚本进行的。以下是几个重要的启动文件:
train.py
:单GPU训练脚本。dist_train.sh
:多GPU分布式训练脚本。test.py
:单GPU测试脚本。dist_test.sh
:多GPU分布式测试脚本。
例如,使用单GPU训练模型,可以运行以下命令:
python tools/train.py configs/textrecog/corner_transformer/corner_transformer_academic.py
使用多GPU分布式训练模型,可以运行以下命令:
./tools/dist_train.sh configs/textrecog/corner_transformer/corner_transformer_academic.py outputs/corner_transformer/ 4
3. 项目的配置文件介绍
配置文件位于configs
目录下,这些文件定义了模型的训练和测试参数。以下是两个主要的配置文件:
corner_transformer_academic.py
:这是一个训练配置文件,定义了模型结构、损失函数、优化器、学习率调整策略等。corner_transformer_test.py
:这是一个测试配置文件,定义了测试时使用的模型和数据处理方式。
配置文件通常包含以下部分:
model
:定义模型的架构。data
:定义数据集的加载和处理方式。train_cfg
:定义训练过程的配置,如优化器、学习率等。test_cfg
:定义测试过程的配置。workflow
:定义训练和测试的流程。
配置文件使得模型的训练和测试过程更加灵活和可配置,用户可以根据自己的需求进行调整。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考