WordArt项目使用教程

WordArt项目使用教程

WordArt The official code of CornerTransformer (ECCV 2022, Oral) on top of MMOCR. WordArt 项目地址: https://gitcode.com/gh_mirrors/wor/WordArt

1. 项目目录结构及介绍

WordArt项目是一个用于艺术文本识别的开源项目。项目的目录结构如下:

  • configs:存放配置文件,包括训练、测试等不同阶段的配置。
  • demo:示例代码和图像,用于展示如何使用模型进行预测。
  • docker:Docker相关文件,用于容器化项目。
  • docs:项目文档。
  • mmocr:与MMOCR库相关的代码。
  • requirements:项目依赖的Python包列表。
  • resources:项目所需的资源文件,如图像数据集等。
  • tests:单元测试代码。
  • tools:项目工具脚本,如训练、测试脚本等。
  • .codespellrc:codespell配置文件。
  • .coveragerc:coverage配置文件。
  • .owners.yml:项目贡献者名单。
  • .pre-commit-config.yaml:pre-commit钩子配置。
  • .pylintrc:pylint配置文件。
  • CITATION.cff:项目引用信息。
  • LICENSE:项目许可证。
  • MANIFEST.in:打包时包含的文件列表。
  • README.md:项目自述文件。
  • README_zh-CN.md:项目自述文件中文版。
  • model-index.yml:模型索引文件。
  • requirements.txt:项目依赖的Python包列表。
  • setup.cfg:项目设置文件。
  • setup.py:项目安装脚本。

2. 项目的启动文件介绍

项目的启动主要是通过tools目录下的脚本进行的。以下是几个重要的启动文件:

  • train.py:单GPU训练脚本。
  • dist_train.sh:多GPU分布式训练脚本。
  • test.py:单GPU测试脚本。
  • dist_test.sh:多GPU分布式测试脚本。

例如,使用单GPU训练模型,可以运行以下命令:

python tools/train.py configs/textrecog/corner_transformer/corner_transformer_academic.py

使用多GPU分布式训练模型,可以运行以下命令:

./tools/dist_train.sh configs/textrecog/corner_transformer/corner_transformer_academic.py outputs/corner_transformer/ 4

3. 项目的配置文件介绍

配置文件位于configs目录下,这些文件定义了模型的训练和测试参数。以下是两个主要的配置文件:

  • corner_transformer_academic.py:这是一个训练配置文件,定义了模型结构、损失函数、优化器、学习率调整策略等。
  • corner_transformer_test.py:这是一个测试配置文件,定义了测试时使用的模型和数据处理方式。

配置文件通常包含以下部分:

  • model:定义模型的架构。
  • data:定义数据集的加载和处理方式。
  • train_cfg:定义训练过程的配置,如优化器、学习率等。
  • test_cfg:定义测试过程的配置。
  • workflow:定义训练和测试的流程。

配置文件使得模型的训练和测试过程更加灵活和可配置,用户可以根据自己的需求进行调整。

WordArt The official code of CornerTransformer (ECCV 2022, Oral) on top of MMOCR. WordArt 项目地址: https://gitcode.com/gh_mirrors/wor/WordArt

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌崧铖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值