AWS Lambda Packs 使用教程
1. 项目的目录结构及介绍
lambda-packs
是一个包含预编译软件包的仓库,用于在 AWS Lambda 环境中运行不同的服务和应用。以下是项目的目录结构及其简要介绍:
lambda-packs/
├── LICENSE.txt # 项目许可证文件
├── README.md # 项目说明文件
├── .gitattributes # Git 属性文件
├── .gitignore # Git 忽略文件
├── Lxml_requests/ # 针对静态HTML页面解析的包
├── ONNX/ # ONNX 模型运行包
├── Pandas_numpy/ # Pandas 和 NumPy 包
├── Pyrestest_wrk/ # Pyrestest 和 WRK 压力测试包
├── Selenium_PhantomJS/ # Selenium 和 PhantomJS 网络爬虫包
├── Sklearn_scipy_numpy/ # Scikit-learn、SciPy 和 NumPy 包
├── Tensorflow/ # Tensorflow 机器学习包
├── ... # 其他预编译软件包
每个子目录下通常包含了该软件包的源代码、配置文件、以及部署脚本等。
2. 项目的启动文件介绍
启动文件通常是每个软件包目录下的 serverless.yml
文件。这是一个 Serverless Framework 的配置文件,用于定义和部署 AWS Lambda 函数。以下是一个示例:
service: my-service
provider:
name: aws
runtime: python3.8
functions:
myFunction:
handler: handler.myFunction
events:
- http:
path: myFunction
method: get
在这个文件中,我们定义了一个服务 my-service
,一个 AWS Lambda 函数 myFunction
,以及它的处理程序和触发器。
3. 项目的配置文件介绍
配置文件通常包括 config.json
或 .env
文件,用于存储函数运行时所需的环境变量和配置信息。以下是一个 config.json
的示例:
{
"region": "us-east-1",
"lambdaFunctionName": "MyLambdaFunction",
"timeout": 10,
"memorySize": 256
}
在这个配置文件中,我们定义了 Lambda 函数的运行区域、函数名称、超时时间和内存大小等。
.env
文件的示例:
REGION=us-east-1
LAMBDA_FUNCTION_NAME=MyLambdaFunction
TIMEOUT=10
MEMORY_SIZE=256
.env
文件通常在本地开发环境中使用,其中的变量会在部署时被 Serverless Framework 自动加载到 Lambda 函数的环境中。
以上就是 lambda-packs
项目的目录结构、启动文件和配置文件的简要介绍。使用这些文件,您可以轻松地在 AWS Lambda 上部署和运行各种预编译软件包。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考