PyTorch教程:手动实现梯度下降算法解析

PyTorch教程:手动实现梯度下降算法解析

pytorchTutorial PyTorch Tutorials from my YouTube channel pytorchTutorial 项目地址: https://gitcode.com/gh_mirrors/py/pytorchTutorial

引言

在机器学习领域,梯度下降是最基础也是最重要的优化算法之一。本文将通过一个简单的线性回归示例,详细解析如何手动实现梯度下降算法。这个示例来自一个PyTorch教程项目,展示了在没有使用任何深度学习框架的情况下,如何从零开始实现梯度下降。

问题描述

我们有一个简单的线性回归问题,目标是找到最佳权重w,使得模型f(x) = w * x能够最好地拟合给定的数据点。已知输入X = [1,2,3,4],对应的输出Y = [2,4,6,8],显然真实模型应该是f(x) = 2x。

核心概念

1. 前向传播(Forward Pass)

前向传播是指通过当前权重计算模型输出的过程。在我们的例子中,就是简单的乘法运算:

def forward(x):
    return w * x

2. 损失函数(Loss Function)

我们使用均方误差(MSE)作为损失函数,它衡量预测值与真实值之间的差异:

def loss(y, y_pred):
    return ((y_pred - y)**2).mean()

3. 梯度计算(Gradient Computation)

梯度表示损失函数相对于权重w的变化率。对于MSE损失函数,其梯度可以解析求得:

def gradient(x, y, y_pred):
    return np.mean(2*x*(y_pred - y))

梯度下降实现步骤

  1. 初始化权重:我们从w=0.0开始
  2. 前向传播:用当前权重计算预测值
  3. 计算损失:评估当前模型的性能
  4. 计算梯度:确定权重更新的方向和大小
  5. 更新权重:沿梯度反方向调整权重
  6. 重复迭代:直到达到指定迭代次数或收敛

代码实现详解

# 训练参数设置
learning_rate = 0.01  # 学习率控制每次更新的步长
n_iters = 20          # 迭代次数

for epoch in range(n_iters):
    # 前向传播
    y_pred = forward(X)
    
    # 计算损失
    l = loss(Y, y_pred)
    
    # 计算梯度
    dw = gradient(X, Y, y_pred)
    
    # 更新权重
    w -= learning_rate * dw
    
    # 每隔2个epoch打印一次训练进度
    if epoch % 2 == 0:
        print(f'epoch {epoch+1}: w = {w:.3f}, loss = {l:.8f}')

关键点分析

  1. 学习率选择:学习率(learning_rate)是超参数,控制每次权重更新的幅度。太大可能导致震荡,太小则收敛缓慢。

  2. 迭代次数:n_iters决定了训练过程将持续多少个epoch。在实际应用中,通常会设置收敛条件而非固定迭代次数。

  3. 权重更新:注意更新公式是w -= learning_rate * dw,减号表示沿梯度反方向(下降方向)更新。

  4. 梯度计算:这里我们手动推导并实现了梯度计算,实际上深度学习框架会自动完成这一过程。

训练结果分析

运行代码后,我们可以看到权重w从初始值0.0逐渐接近理论最优值2.0,同时损失函数值不断减小。这表明我们的梯度下降实现是有效的。

实际应用中的考虑

  1. 批量处理:本例使用了全批量梯度下降(使用所有样本计算梯度),对于大数据集,通常会采用小批量梯度下降。

  2. 收敛判断:实际应用中会监控验证集损失,而不仅仅是训练损失。

  3. 优化器选择:除了基础梯度下降,还有动量法、Adam等更高级的优化算法。

总结

通过这个简单的示例,我们深入理解了梯度下降算法的核心原理和实现细节。虽然现代深度学习框架已经封装了这些功能,但了解底层实现原理对于调试模型和解决实际问题非常有帮助。在后续学习中,我们将看到PyTorch如何简化这些过程,让开发者更专注于模型设计。

pytorchTutorial PyTorch Tutorials from my YouTube channel pytorchTutorial 项目地址: https://gitcode.com/gh_mirrors/py/pytorchTutorial

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

成婕秀Timothy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值