EditGAN 使用教程
editGAN_release 项目地址: https://gitcode.com/gh_mirrors/ed/editGAN_release
1. 项目介绍
EditGAN 是一个基于生成对抗网络(GAN)的高精度语义图像编辑工具。该项目由 Huan Ling、Karsten Kreis 等人开发,并在 NeurIPS 2021 上发表。EditGAN 通过对图像的潜在空间进行编辑,实现了对图像的精细调整,如改变汽车的颜色、形状等,而无需复杂的图像处理知识。
2. 项目快速启动
环境准备
- Python 3.8
- Pytorch >= 1.4.0
- CUDA 10.1 或 11.4
步骤
-
克隆项目到本地:
git clone https://github.com/nv-tlabs/editGAN_release.git
-
设置 Python 环境:
virtualenv env source env/bin/activate
-
安装依赖:
pip install -r requirements.txt
-
将项目路径加入
PYTHONPATH
:export PYTHONPATH=$PWD
-
下载预训练模型并放在
./checkpoint
文件夹下。 -
运行应用:
python run_app.py
应用将在本地浏览器中启动,访问
localhost:8888
。
3. 应用案例和最佳实践
应用案例
- 交互式演示工具:通过 WebAPP 实现图像编辑的交互式操作。
- 多次编辑:在一张图像上应用多个编辑向量,实现复杂的效果。
- 插值和组合:通过插值和组合多个编辑向量,创造出新的视觉效果。
最佳实践
- 使用预训练模型:为了简化操作,可以直接使用项目提供的预训练模型。
- 训练自己的模型:如果需要特定的编辑效果,可以按照项目提供的步骤训练自己的模型。
4. 典型生态项目
EditGAN 的生态系统包括但不限于以下项目:
- StyleGAN2:用于训练生成对抗网络的官方代码。
- DatasetGAN:用于图像分割的生成对抗网络。
- 其他相关的图像处理和编辑工具。
通过这些项目,用户可以扩展 EditGAN 的功能,实现更丰富的图像编辑效果。
editGAN_release 项目地址: https://gitcode.com/gh_mirrors/ed/editGAN_release