Vosk离线语音识别工具包安装与使用指南

Vosk离线语音识别工具包安装与使用指南

项目地址:https://gitcode.com/gh_mirrors/vo/vosk-api

目录结构及介绍

Vosk项目的主要目录及其功能概述如下:

  • android: 包含Android平台相关的源代码和编译配置。
  • csharp: 提供了.NET平台下的C#语音识别绑定库。
  • golang: 包括Go语言的绑定库实现。
  • ios: 内容涉及iOS平台的相关代码和构建设置。
  • java: Java平台上的语音识别API实现。
  • kotlin: Kotlin语言版本的语音识别接口。
  • nodejs: 节点.js环境中的绑定库。
  • python: Python编程语言下的Vosk集成库。
  • ruby: Ruby语言的接口实现。
  • rust: 使用Rust编写的库。
  • src: 核心源码,包括Vosk算法和模型的实现。
  • training: 提供了训练新模型或自定义现有模型所需的数据和脚本。
  • .gitignore: Git版本控制系统忽略的文件类型列表。
  • travis.yml: Travis CI持续集成服务的配置文件。

特别指出

  • android 目录: 包含有为Android设备定制的轻量级模型和相关应用示例。

  • csharp, golang, java, nodejs, python, ruby, rust 目录: 这些目录分别提供了不同编程语言的绑定库实现,使开发者能够利用各自熟悉的开发环境下进行语音识别操作。

  • .gitignore 文件: 确保私有数据和个人配置不被上传到公共仓库中,保证仓库的安全性和整洁性。

启动文件介绍

Vosk没有单一明确的“启动”文件概念,因为其设计灵活性允许开发者在多种环境中自由调用。但在各个语言绑定目录下(如 python, java 或者 nodejs),通常会有入口脚本或者例子来演示如何初始化和运行Vosk引擎。

例如,在Python绑定中,你可以找到类似以下的启动脚本:

from vosk import Model, KaldiRecognizer, SetLogLevel
import sys
import os
import wave

SetLogLevel(0)

wf = wave.open(sys.argv[1], "rb")
if wf.getnchannels() != 1 or wf.getsampwidth() != 2 or wf.getcomptype() != "NONE":
    print("Audio file must be WAV format mono PCM.")
    exit(1)

model = Model("path/to/model")

rec = KaldiRecognizer(model, wf.getframerate())

while True:
    data = wf.readframes(4000)
    if len(data) == 0:
        break
    if rec.AcceptWaveform(data):
        print(rec.Result())
    else:
        print(rec.PartialResult())

print(rec.FinalResult())

这个脚本从.wav音频文件读取数据,使用预加载的Vosk模型进行识别并打印结果。你需要确保替换 "path/to/model" 部分为实际的模型路径。

配置文件介绍

Vosk工具本身并不依赖于特定的配置文件来进行参数调整,但它的有效工作往往需要通过模型文件来指定识别的语言和环境。这些模型文件作为神经网络权重和声学模型的一部分存储在外部位置,而不是内置在软件内部。

要让Vosk正常工作,你至少需要下载一个适合目标语言的模型。对于不同的语言,模型文件大小从几十兆字节到数百兆字节不等,例如vosk-model-en-us-0.22.zip用于英语,而更复杂的语言模型则更大一些。

一旦获取了模型,可以通过以下方式指定模型的路径:

model_path = 'path/to/the/model'
model = Model(model_path)

这将加载模型以备后续的语音识别处理。此外,你还可以根据需求设定各种额外参数,比如采样率、识别词汇范围以及是否启用了部分结果输出等等,但这通常是在程序逻辑层面上完成而非通过独立的配置文件。

vosk-api vosk-api: Vosk是一个开源的离线语音识别工具包,支持20多种语言和方言的语音识别,适用于各种编程语言,可以用于创建字幕、转录讲座和访谈等。 vosk-api 项目地址: https://gitcode.com/gh_mirrors/vo/vosk-api

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 回答1: vosk-model-small-cn-0.22是一种基于语音识别技术的模型,主要用于将人类语音转换为可操作的文本形式。其名称中的“vosk-model”代表它是一种基于Vosk平台构建的模型,而“small-cn-0.22”则代表它是一个较小的中文模型,其版本号为0.22。 该模型的应用领域非常广泛,它可以用于在智能家居、智能语音助手、语音翻译等领域实现人机交互。该模型通过将输入的语音信号分解成一系列语音片段,并利用先进的机器学习算法对这些片段进行分析,从而识别出相应的语音内容。 相比于传统的语音识别技术,vosk-model-small-cn-0.22具有许多优势。首先,它具有较高的准确率和实时性,可以在很短的时间内完成语音识别任务,并且准确性也很高。其次,该模型的体积较小,所需的计算资源也相对较少,这对于一些硬件条件较为有限的设备来说尤其重要。 总之,vosk-model-small-cn-0.22是一种具有广泛应用前景的语音识别模型,它能够广泛应用于人机交互、智能家居、智能语音助手等领域,为构建更加智能化的生活提供了有力的支持。 ### 回答2: vosk-model-small-cn-0.22是一个语音识别模型,采用轻量级的卷积神经网络和CTC(Connectionist Temporal Classification)算法。该模型主要用于汉语普通话的语音识别任务,可以较为准确地将语音信号转化为文字。 vosk-model-small-cn-0.22具有如下特点: 1. 小巧精简:该模型大小只有100MB左右,相比其他语音识别模型更加轻量化,占用资源少。 2. 兼容性强:该模型可以在各种移动端硬件上运行,可移植性强。 3. 语音识别效果良好:该模型训练数据覆盖面广泛,已经经过大量训练和优化,并且在多个语音识别测试基准上表现优异。 4. 开放源代码:该模型采用开源方式发布,任何人都可以从GitHub上下载并使用。 总之,vosk-model-small-cn-0.22是一款非常出色的语音识别模型,对于需要将语音信号转换为文字的应用场景具有很大的帮助。 ### 回答3: vosk-model-small-cn-0.22是一个用于语音识别的中文模型。它是由Vosk团队开发的一种基于深度学习技术的语音识别模型,可以识别中文语音并将其转换为文本数据。该模型训练数据包含了多种发音和语言习惯,使得它可以适应多种方言和口音。因此,该语音识别模型不仅能够应用于标准普通话,还可以适应其他方言和口音的语音,使得语音识别的效果更加准确和高效。此外,vosk-model-small-cn-0.22模型不需要互联网的连接,可以脱机进行语音识别,具有较高的安全性和隐私保护能力。该模型在语音识别效果和资源消耗方面均呈现出优秀的表现,因此,它在许多领域,如智能家居、语音助手、语音搜索等方面都有广泛的应用。总之,vosk-model-small-cn-0.22是一种功能强大且可靠的中文语音识别模型,将对我们的语音识别技术和应用产生积极的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆欣瑶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值