Expert Parallelism Load Balancer(EPLB)使用教程

Expert Parallelism Load Balancer(EPLB)使用教程

EPLB Expert Parallelism Load Balancer EPLB 项目地址: https://gitcode.com/gh_mirrors/ep/EPLB

1. 项目目录结构及介绍

EPLB(Expert Parallelism Load Balancer)项目的目录结构如下:

EPLB/
├── .gitignore
├── LICENSE
├── README.md
├── eplb.py
└── example.png
  • .gitignore:Git忽略文件,用于指定Git应该忽略的文件和目录。
  • LICENSE:项目许可证文件,本项目采用MIT许可证。
  • README.md:项目自述文件,包含了项目的详细说明和用法。
  • eplb.py:项目的主要Python脚本,包含了负载均衡算法的实现。
  • example.png:示例图片文件,用于展示或说明项目。

2. 项目的启动文件介绍

项目的启动和主要功能都集中在eplb.py文件中。以下是eplb.py的主要功能:

  • rebalance_experts:这是负载均衡算法的主要函数,它根据输入的专家负载和系统配置,计算出一个平衡的专家复制和放置计划。

下面是一个使用rebalance_experts函数的示例代码:

import torch
import eplb

weight = torch.tensor([
    [90, 132, 40, 61, 104, 165, 39, 4, 73, 56, 183, 86],
    [20, 107, 104, 64, 19, 197, 187, 157, 172, 86, 16, 27]
])
num_replicas = 16
num_groups = 4
num_nodes = 2
num_gpus = 8

phy2log, log2phy, logcnt = eplb.rebalance_experts(
    weight, num_replicas, num_groups, num_nodes, num_gpus
)
print(phy2log)

输出结果将展示负载均衡后的专家复制和放置计划。

3. 项目的配置文件介绍

本项目没有特定的配置文件。所有必要的配置都是通过函数参数传递的。在使用rebalance_experts函数时,以下参数需要根据实际情况进行配置:

  • weight:一个二维Tensor,代表每个专家的负载。
  • num_replicas:系统中专家的副本数量。
  • num_groups:专家分组的数量。
  • num_nodes:服务器节点的数量。
  • num_gpus:每个节点上的GPU数量。

通过调整这些参数,用户可以根据自己的系统环境和需求来定制负载均衡策略。

EPLB Expert Parallelism Load Balancer EPLB 项目地址: https://gitcode.com/gh_mirrors/ep/EPLB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明咏耿Helena

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值