使用TVM在Adreno GPU上部署PyTorch模型实战指南
前言
在移动设备上高效运行深度学习模型是AI应用落地的重要挑战之一。本文将详细介绍如何使用TVM框架将PyTorch模型部署到Adreno GPU设备上,涵盖从模型准备到最终部署的完整流程。
环境准备
基础软件安装
首先需要安装PyTorch和TorchVision作为我们的模型库:
pip install torch torchvision
TVM Android构建
需要为Android设备构建TVM运行时环境,构建完成后会得到两个关键文件:
libtvm_runtime.so
- TVM运行时库tvm_rpc
- RPC服务器程序
设备端设置
推送必要文件到设备
- 获取设备ID:
adb devices
- 设置环境变量指定设备:
export ANDROID_SERIAL=<device-hash>
- 推送TVM运行时文件到设备:
adb push libtvm_runtime.so tvm_rpc /data/local/tmp
- 推送必要的依赖库:
adb push libc++_shared.so /data/local/tmp
启动RPC服务
- 启动RPC tracker服务:
python3 -m tvm.exec.rpc_tracker --port 9190
- 在设备上启动RPC服务器:
adb reverse tcp:9190 tcp:9190
adb forward tcp:5000 tcp:5000
adb shell LD_LIBRARY_PATH=/data/local/tmp /data/local/tmp/tvm_rpc server --host=0.0.0.0 --port=5000 --tracker=127.0.0.1:9190 --key=android
- 检查设备是否可用:
python -m tvm.exec.query_rpc_tracker --port 9190
模型准备与转换
获取PyTorch模型
我们以ResNet-18为例:
import torchvision
model = torchvision.models.resnet18(pretrained=True)
model = model.eval()
模型转换
将PyTorch模型转换为TVM的Relay中间表示:
import tvm
from tvm import relay
input_shape = [1, 3, 224, 224]
input_data = torch.randn(input_shape)
scripted_model = torch.jit.trace(model, input_data).eval()
input_name = "input0"
shape_list = [(input_name, input_shape)]
mod, params = relay.frontend.from_pytorch(scripted_model, shape_list)
精度优化
Adreno GPU在float16精度下效率更高,我们可以进行混合精度转换:
from tvm.driver.tvmc.transform import apply_graph_transforms
mod = apply_graph_transforms(
mod,
{
"mixed_precision": True,
"mixed_precision_ops": ["nn.conv2d", "nn.dense"],
"mixed_precision_calculation_type": "float16",
"mixed_precision_acc_type": "float32",
},
)
模型编译与优化
目标定义
根据运行环境设置目标平台:
target = tvm.target.Target("opencl -device=adreno")
自动调优(可选)
对于性能关键应用,可以进行自动调优:
tasks = autotvm.task.extract_from_program(mod, target=target, params=params)
tuner = autotvm.tuner.XGBTuner(tasks[0])
tuner.tune(
n_trial=100,
measure_option=autotvm.measure_option(
builder=autotvm.LocalBuilder(timeout=10),
runner=autotvm.RPCRunner(
key="android",
host="127.0.0.1",
port=9190,
number=4,
timeout=60
)
),
callbacks=[autotvm.callback.log_to_file("tuning.log")]
)
模型编译
使用调优结果或直接编译模型:
with autotvm.apply_history_best("tuning.log"):
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target=target, params=params)
部署与推理
远程部署
将编译好的模型推送到设备:
remote = tracker.request("android")
dev = remote.cl(0)
lib.export_library("deploy_lib.so")
remote.upload("deploy_lib.so")
rlib = remote.load_module("deploy_lib.so")
module = graph_executor.GraphModule(rlib["default"](dev))
运行推理
准备输入数据并执行推理:
# 预处理图像
img = Image.open("cat.png").resize((224, 224))
img = transforms.ToTensor()(img)
img = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(img)
img = img.unsqueeze(0).numpy()
# 执行推理
module.set_input(input_name, tvm.nd.array(img))
module.run()
output = module.get_output(0)
结果解析
解析模型输出获取预测结果:
top5 = np.argsort(output.asnumpy()[0])[-5:][::-1]
synset = ["tabby cat", "tiger cat", ...] # ImageNet类别标签
print("Top5 predictions:")
for i, idx in enumerate(top5):
print(f"\t#{i+1}: {synset[idx]}")
性能评估
评估模型推理性能:
print("Performance metrics:")
print(module.benchmark(dev, number=10, repeat=3))
总结
本文详细介绍了使用TVM将PyTorch模型部署到Adreno GPU的完整流程,包括:
- 环境准备与设备设置
- 模型获取与转换
- 精度优化与自动调优
- 模型编译与部署
- 推理执行与性能评估
通过TVM的优化能力,我们可以在Adreno GPU上高效运行深度学习模型,充分发挥移动设备的计算潜力。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考