使用TVM在Adreno GPU上部署PyTorch模型实战指南

使用TVM在Adreno GPU上部署PyTorch模型实战指南

tvm-cn TVM Documentation in Chinese Simplified / TVM 中文文档 tvm-cn 项目地址: https://gitcode.com/gh_mirrors/tv/tvm-cn

前言

在移动设备上高效运行深度学习模型是AI应用落地的重要挑战之一。本文将详细介绍如何使用TVM框架将PyTorch模型部署到Adreno GPU设备上,涵盖从模型准备到最终部署的完整流程。

环境准备

基础软件安装

首先需要安装PyTorch和TorchVision作为我们的模型库:

pip install torch torchvision

TVM Android构建

需要为Android设备构建TVM运行时环境,构建完成后会得到两个关键文件:

  • libtvm_runtime.so - TVM运行时库
  • tvm_rpc - RPC服务器程序

设备端设置

推送必要文件到设备

  1. 获取设备ID:
adb devices
  1. 设置环境变量指定设备:
export ANDROID_SERIAL=<device-hash>
  1. 推送TVM运行时文件到设备:
adb push libtvm_runtime.so tvm_rpc /data/local/tmp
  1. 推送必要的依赖库:
adb push libc++_shared.so /data/local/tmp

启动RPC服务

  1. 启动RPC tracker服务:
python3 -m tvm.exec.rpc_tracker --port 9190
  1. 在设备上启动RPC服务器:
adb reverse tcp:9190 tcp:9190
adb forward tcp:5000 tcp:5000
adb shell LD_LIBRARY_PATH=/data/local/tmp /data/local/tmp/tvm_rpc server --host=0.0.0.0 --port=5000 --tracker=127.0.0.1:9190 --key=android
  1. 检查设备是否可用:
python -m tvm.exec.query_rpc_tracker --port 9190

模型准备与转换

获取PyTorch模型

我们以ResNet-18为例:

import torchvision
model = torchvision.models.resnet18(pretrained=True)
model = model.eval()

模型转换

将PyTorch模型转换为TVM的Relay中间表示:

import tvm
from tvm import relay

input_shape = [1, 3, 224, 224]
input_data = torch.randn(input_shape)
scripted_model = torch.jit.trace(model, input_data).eval()

input_name = "input0"
shape_list = [(input_name, input_shape)]
mod, params = relay.frontend.from_pytorch(scripted_model, shape_list)

精度优化

Adreno GPU在float16精度下效率更高,我们可以进行混合精度转换:

from tvm.driver.tvmc.transform import apply_graph_transforms

mod = apply_graph_transforms(
    mod,
    {
        "mixed_precision": True,
        "mixed_precision_ops": ["nn.conv2d", "nn.dense"],
        "mixed_precision_calculation_type": "float16",
        "mixed_precision_acc_type": "float32",
    },
)

模型编译与优化

目标定义

根据运行环境设置目标平台:

target = tvm.target.Target("opencl -device=adreno")

自动调优(可选)

对于性能关键应用,可以进行自动调优:

tasks = autotvm.task.extract_from_program(mod, target=target, params=params)

tuner = autotvm.tuner.XGBTuner(tasks[0])
tuner.tune(
    n_trial=100,
    measure_option=autotvm.measure_option(
        builder=autotvm.LocalBuilder(timeout=10),
        runner=autotvm.RPCRunner(
            key="android",
            host="127.0.0.1",
            port=9190,
            number=4,
            timeout=60
        )
    ),
    callbacks=[autotvm.callback.log_to_file("tuning.log")]
)

模型编译

使用调优结果或直接编译模型:

with autotvm.apply_history_best("tuning.log"):
    with tvm.transform.PassContext(opt_level=3):
        lib = relay.build(mod, target=target, params=params)

部署与推理

远程部署

将编译好的模型推送到设备:

remote = tracker.request("android")
dev = remote.cl(0)

lib.export_library("deploy_lib.so")
remote.upload("deploy_lib.so")
rlib = remote.load_module("deploy_lib.so")
module = graph_executor.GraphModule(rlib["default"](dev))

运行推理

准备输入数据并执行推理:

# 预处理图像
img = Image.open("cat.png").resize((224, 224))
img = transforms.ToTensor()(img)
img = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(img)
img = img.unsqueeze(0).numpy()

# 执行推理
module.set_input(input_name, tvm.nd.array(img))
module.run()
output = module.get_output(0)

结果解析

解析模型输出获取预测结果:

top5 = np.argsort(output.asnumpy()[0])[-5:][::-1]
synset = ["tabby cat", "tiger cat", ...]  # ImageNet类别标签

print("Top5 predictions:")
for i, idx in enumerate(top5):
    print(f"\t#{i+1}: {synset[idx]}")

性能评估

评估模型推理性能:

print("Performance metrics:")
print(module.benchmark(dev, number=10, repeat=3))

总结

本文详细介绍了使用TVM将PyTorch模型部署到Adreno GPU的完整流程,包括:

  1. 环境准备与设备设置
  2. 模型获取与转换
  3. 精度优化与自动调优
  4. 模型编译与部署
  5. 推理执行与性能评估

通过TVM的优化能力,我们可以在Adreno GPU上高效运行深度学习模型,充分发挥移动设备的计算潜力。

tvm-cn TVM Documentation in Chinese Simplified / TVM 中文文档 tvm-cn 项目地址: https://gitcode.com/gh_mirrors/tv/tvm-cn

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洪显彦Lawyer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值