Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning...

Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning:实现能源系统最优调度的混合算法

Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning The Source code for paper "Optimal Energy System Scheduling Combining Mixed-Integer Programming and Deep Reinforcement Learning". Safe reinforcement learning, energy management Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning 项目地址: https://gitcode.com/gh_mirrors/op/Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning

项目介绍

随着可再生能源的广泛集成,能源系统的调度变得越来越复杂。传统的优化方法难以满足实时操作中对严格运营约束的需求。本项目提出了一种结合混合整数规划(MIP)和深度强化学习(DRL)的算法,名为MIP-DQN,旨在为能源系统调度提供一种既严格遵循运营约束,又具备数据驱动特性的解决方案。

项目技术分析

核心算法

MIP-DQN算法利用了最新的深度神经网络优化技术,将DNN表示为MIP公式,从而在行动空间中考虑任何约束。该算法通过以下步骤实现:

  1. 数据驱动:通过历史和实时数据训练DNN,使其能够学习能源系统的动态特性。
  2. 模型自由:无需预先定义系统模型,DNN通过自我学习不断优化策略。
  3. 约束严格:算法确保在行动空间中严格遵循所有运营约束,如功率平衡、爬升或下降限制。

依赖库

项目依赖于多个Python库,包括PYOMOpandasnumpymatplotlibpytorchOMLTwandb。这些库分别用于数据操作、数值计算、绘图、神经网络训练以及实验监控。

项目及技术应用场景

应用背景

在可再生能源大规模接入的背景下,能源系统的调度需要考虑多种因素,如波动性、随机性和运营约束。MIP-DQN算法的应用场景包括但不限于:

  • 电力系统调度:优化发电计划的制定,提高系统运行效率。
  • 微网管理:平衡供需,实现能源的高效利用。
  • 储能系统调度:优化储能单元的充放电策略,提高经济效益。

实际应用

MIP-DQN算法在以下方面具有显著优势:

  1. 实时调度:算法能够快速响应系统变化,满足实时调度的需求。
  2. 高效决策:基于DNN的学习能力,算法能够高效地制定调度策略。
  3. 严格约束:即使在未见过的情况下,算法也能严格遵循运营约束。

项目特点

算法优势

  1. 性能优越:MIP-DQN算法在数值模拟中表现优异,与现有最先进的DRL算法相比,具有更低的误差。
  2. 约束遵循:算法能够严格遵循所有运营约束,确保调度策略的可行性。
  3. 适应性强:通过数据驱动,算法能够适应不同类型的能源系统。

研究贡献

本项目的研究成果不仅为能源系统调度提供了新的解决方案,也为深度强化学习在严格约束环境中的应用提供了新的思路。

总结

Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning项目通过结合混合整数规划和深度强化学习,为能源系统调度提供了一种高效、可靠的算法。该算法在遵循严格运营约束的同时,具备数据驱动的特性,为可再生能源的大规模接入提供了有力支持。我们强烈推荐有兴趣的研究者和工程师尝试并应用此开源项目,以推动能源系统调度的进一步发展。

Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning The Source code for paper "Optimal Energy System Scheduling Combining Mixed-Integer Programming and Deep Reinforcement Learning". Safe reinforcement learning, energy management Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning 项目地址: https://gitcode.com/gh_mirrors/op/Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔吟皎Gilbert

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值