《Native Sparse Attention》项目教程

《Native Sparse Attention》项目教程

native-sparse-attention 🐳 Efficient Triton implementations for "Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention" native-sparse-attention 项目地址: https://gitcode.com/gh_mirrors/na/native-sparse-attention

1. 项目目录结构及介绍

《Native Sparse Attention》项目的目录结构如下:

native-sparse-attention/
├── .github/              # GitHub 工作流和配置文件
├── 3rdparty/             # 第三方依赖库
├── benchmarks/           # 性能测试相关文件
├── configs/              # 配置文件
├── native_sparse_attention/ # 核心代码实现
├── tests/                # 测试文件
├── .flake8               # flake8 配置文件
├── .gitignore            # git 忽略文件
├── .gitmodules           # git 子模块配置文件
├── .pre-commit-config.yaml # pre-commit 配置文件
├── LICENSE               # 许可证文件
├── README.md             # 项目说明文件
├── fla/                  # 相关项目文件
├── flame/                # 相关项目文件
├── pyproject.toml        # Python 项目配置文件
├── setup.py              # Python 包设置文件
├── train.py              # 训练脚本
└── train.sh              # 训练shell脚本
  • .github/:包含项目的GitHub Actions工作流和配置文件,用于自动化测试、构建等。
  • 3rdparty/:存放项目依赖的第三方库。
  • benchmarks/:包含用于性能测试的脚本和文件。
  • configs/:包含项目的配置文件,用于设置项目运行时的参数。
  • native_sparse_attention/:项目的核心代码所在目录,包含了sparse attention的实现。
  • tests/:包含项目的单元测试和集成测试代码。
  • .flake8.gitignore.gitmodules.pre-commit-config.yaml:分别为flake8、git、git子模块和pre-commit的配置文件。
  • LICENSE:项目的开源许可证文件。
  • README.md:项目的说明文档,包含了项目的简介、安装和使用指南等。
  • fla/flame/:与项目相关的其他文件或子项目。
  • pyproject.tomlsetup.py:Python项目的配置和设置文件。
  • train.pytrain.sh:用于训练模型的Python脚本和shell脚本。

2. 项目的启动文件介绍

项目的启动主要是通过train.pytrain.sh来完成的。

  • train.py:这是一个Python脚本,用于启动模型的训练过程。它包含了数据加载、模型构建、训练循环等核心训练逻辑。
  • train.sh:这是一个shell脚本,可以用来在支持bash的环境中启动训练。它通常调用train.py脚本来执行训练。

要启动训练,可以在项目目录下运行以下命令:

python train.py

或者使用shell脚本:

./train.sh

3. 项目的配置文件介绍

项目的配置文件位于configs/目录下,这些文件用于设置项目运行时的参数,例如模型结构、训练参数等。

具体的配置文件可能包括:

  • config.json:一个JSON文件,包含了模型的配置参数,如学习率、批量大小、模型结构等。
  • 其他配置文件:根据项目的具体需求,可能会有不同的配置文件,如数据集路径配置、硬件资源配置等。

配置文件的使用通常在train.py中通过读取这些文件来设置训练参数,如下所示:

with open('configs/config.json', 'r') as f:
    config = json.load(f)

然后,就可以使用config字典中的参数来进行模型的训练和其他操作。

native-sparse-attention 🐳 Efficient Triton implementations for "Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention" native-sparse-attention 项目地址: https://gitcode.com/gh_mirrors/na/native-sparse-attention

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔吟皎Gilbert

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值