Swark 使用教程

Swark 使用教程

swark Create architecture diagrams from code automatically using large language models (LLMs). swark 项目地址: https://gitcode.com/gh_mirrors/sw/swark

1. 项目介绍

Swark 是一个 Visual Studio Code 扩展,它能够使用大型语言模型(LLMs)自动从代码生成架构图。Swark 直接与 GitHub Copilot 集成,无需认证或 API 密钥。它是一款免费且开源的工具,支持多种语言,无缝集成,注重隐私,并使用 Mermaid.js 框架生成图表。

2. 项目快速启动

首先,确保你已经安装了 Visual Studio Code 和 GitHub Copilot。

  • 安装 Swark
    通过 Visual Studio Code 扩展市场安装 Swark。

  • 启动 Swark
    在 Visual Studio Code 中打开命令面板,运行 Swark: Create Architecture Diagram 命令。

  • 选择文件夹
    选择你想要生成架构图的代码文件夹。

  • 生成架构图
    Swark 将在几秒钟内打开一个新标签页,显示你的架构图。

以下是启动 Swark 的示例代码:

```bash
# 安装 Swark
code --install-extension swark-io.swark

# 打开 Visual Studio Code 命令面板
cmd+shift+p # Mac
ctrl+shift+p # Windows

# 运行 Swark 命令
Swark: Create Architecture Diagram

# 选择文件夹并等待架构图生成

## 3. 应用案例和最佳实践

- **学习新代码库**  
  使用 Swark 快速生成架构图,以获得对不熟悉的代码库的宏观理解。

- **审查 AI 生成的代码**  
  随着越来越多的项目使用 AI 生成代码,Swark 能帮助您快速可视化项目结构,确保它们符合您的标准。

- **改进文档**  
  使用 Swark 生成的实时架构图来保持您的文档更新和详细。

- **理解旧代码**  
  快速可视化旧代码库的结构,使其更容易维护和重构。

- **发现设计缺陷**  
  通过可视化代码库的依赖关系图来识别不需要的依赖或优化区域。

- **测试覆盖率见解**  
  包含测试文件在 Swark 的输入中,以便一目了然地查看测试覆盖率并解决空白。

## 4. 典型生态项目

Swark 是一个开源项目,它鼓励社区贡献。你可以通过查看项目的 GitHub 仓库来了解如何贡献代码或改进项目。Swark 作为一个 VS Code 扩展,它的生态系统包括但不限于以下项目:

- **Mermaid Markdown Preview**  
  用于在 VS Code 中预览图表的扩展。

- **GitHub Copilot**  
  一个 AI 编程助手,与 Swark 无缝集成以生成架构图。

Swark 通过不断更新和社区贡献,致力于提供更高效的代码可视化解决方案。

swark Create architecture diagrams from code automatically using large language models (LLMs). swark 项目地址: https://gitcode.com/gh_mirrors/sw/swark

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:本文档是关于Anaconda全平台安装指南的详细介绍,旨在帮助用户在Windows、macOS和Linux系统上顺利安装和配置Anaconda。Anaconda作为一款集成丰富工具和库的数据科学平台,极大简化了数据处理、分析、机器学习和可视化的流程。文档首先介绍了安装前的准备工作,包括选择合适的版本和下载安装包。接着分别阐述了三个操作系统上具体的安装步骤,如在Windows上运行安装程序、在macOS上使用终端命令安装、在Linux上运行安装脚本等。此外,还详细讲解了验证安装是否成功的命令,以及配置Anaconda的方法,特别是配置国内镜像源以加快下载速度。最后,针对可能出现的问题提供了解决方案,如路径配置问题、更新和卸载问题等。; 适合人群:对数据科学感兴趣的初学者,以及需要在不同操作系统上安装Anaconda的专业人士。; 使用场景及目标:①帮助用户在Windows、macOS和Linux系统上顺利完成Anaconda的安装与配置;②通过配置国内镜像源提升下载速度,优化用户体验;③解决安装过程中遇到的问题,确保Anaconda能够稳定运行。; 其他说明:文档提供了详细的安装步骤和配置方法,建议读者严格按照步骤操作,并根据实际情况调整配置,如选择合适的安装路径和配置环境变量。对于初次接触Anaconda的用户,建议先熟悉文档内容再进行操作,以避免不必要的错误。
内容概要:本文深入分析了智能汽车产业中线控制动技术的发展趋势,特别是EMB(电子机械制动)技术的进展。文章指出,线控制动技术经历了机械制动、液压制动到线控制动的演变,当前EHB One-box方案是主流选择。然而,EMB作为真正意义的全线控制动,具备响应速度快、控制精度高等显著性能优势,契合智能驾驶的发展需求。随着技术迭代和法规的推进,EMB正从技术研发逐步走向量产。国内外厂商在EMB的研发进度相近,且国产厂商能够绕过液压控制领域的劣势,有望在EMB量产中实现换道超车,提升市场份额。预计到2030年,线控制动市场规模将达到257.5亿元,其中EMB市场规模将达119.8亿元。 适合人群:汽车行业从业者、智能驾驶技术研发人员、汽车零部件供应商及对智能汽车产业发展感兴趣的投资者。 使用场景及目标:①帮助读者理解线控制动技术的演进路径,特别是EMB的技术优势和市场前景;②为国产厂商在智能驾驶领域的战略布局提供参考;③为投资者评估线控制动市场的投资机会提供依据。 其他说明:尽管EMB技术前景广阔,但仍面临产品研发进度、市场渗透率和新能源车销售等方面的不确定性。文中提到的多家国产厂商如伯特利、亚太股份、菲格科技等已在EMB领域取得显著进展,预计2026年将有多款EMB产品实现量产。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廉霓津Max

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值