LN3Diff 项目安装与配置指南

LN3Diff 项目安装与配置指南

LN3Diff [ECCV-2024] LN3Diff creates high-quality 3D object mesh from text within 8 V100-SECONDS. LN3Diff 项目地址: https://gitcode.com/gh_mirrors/ln/LN3Diff

1. 项目基础介绍

LN3Diff 是一个开源项目,它旨在通过文本描述快速生成高质量的3D对象网格。该项目是一个用于3D生成的神经网络框架,采用了一种新颖的扩散模型。该项目的主要编程语言是 Python。

2. 项目使用的关键技术和框架

  • 神经网络场(Neural Field):使用神经网络来表示3D空间中的场,允许从任意视角生成3D对象的视图。
  • 扩散模型(Diffusion Model):一种生成模型,通过逐步引入噪声并最终去噪来生成数据,这里用于3D对象的生成。
  • 文本到图像编码(Text-to-Image Encoding):将文本描述转换成图像,作为生成3D对象的条件。
  • 关键框架和库:该项目使用了 PyTorch 作为深度学习框架,以及其他如 NumPy 和 Matplotlib 等常用科学计算和绘图库。

3. 项目安装和配置的准备工作及详细步骤

准备工作

在开始安装前,请确保您的系统满足以下要求:

  • 操作系统:Linux 或 macOS
  • Python 版本:Python 3.8 或更高版本
  • NVIDIA GPU:推荐使用支持CUDA的NVIDIA GPU,如V100或A100,因为项目中的模型训练和推理需要大量的计算资源。
  • conda 环境:推荐使用 Anaconda 来管理 Python 环境。

安装步骤

  1. 克隆项目仓库

    打开终端(命令提示符或PowerShell),使用以下命令克隆仓库:

    git clone https://github.com/NIRVANALAN/LN3Diff.git
    cd LN3Diff
    
  2. 创建虚拟环境

    使用 conda 创建一个名为 ln3diff 的虚拟环境:

    conda env create -f environment_ln3diff.yml
    

    等待环境创建完成。

  3. 激活虚拟环境

    创建完成后,激活环境:

    conda activate ln3diff
    
  4. 安装依赖项

    如果您没有使用 conda 创建环境,而是想复用现有的 PyTorch 环境,那么您需要安装以下依赖项:

    pip install -r requirements.txt
    

    注意,可能还需要安装 apex 库,您可以从 GitHub 获取并按照说明进行安装。

  5. 下载预训练模型(可选)

    项目可能包含预训练的模型文件,您可以从 OneDrive 或其他提供的源下载这些文件,并将它们放到项目中的 checkpoints 文件夹下。

  6. 运行示例脚本

    运行以下任意一个脚本来进行推理测试:

    # 对于图像到3D的推理
    bash shell_scripts/final_release/inference/sample_obajverse_i23d_dit.sh
    
    # 对于文本到3D的推理
    bash shell_scripts/final_release/inference/sample_obajverse_t23d_dit.sh
    

    脚本运行时,会从 Hugging Face 直接下载所需的模型。

按照以上步骤,您应该能够成功安装并运行 LN3Diff 项目。如果在安装过程中遇到问题,请查阅项目的 README 文档或相关 GitHub issues 以获取更多帮助。

LN3Diff [ECCV-2024] LN3Diff creates high-quality 3D object mesh from text within 8 V100-SECONDS. LN3Diff 项目地址: https://gitcode.com/gh_mirrors/ln/LN3Diff

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廉霓津Max

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值