Herokuish 使用教程

Herokuish 使用教程

herokuish Utility for emulating Heroku build and runtime tasks in containers herokuish 项目地址: https://gitcode.com/gh_mirrors/he/herokuish

1. 项目的目录结构及介绍

Herokuish 是一个用于在容器中模拟 Heroku 构建和运行时任务的开源项目。以下是项目的目录结构及其简要介绍:

.
├── bin/                       # 存放可执行文件
├── build-deps/                # 构建依赖
├── buildpacks/                # 存放 buildpacks
├── contrib/                   # 贡献的代码或文档
├── include/                   # 包含的头文件等
├── tests/                     # 测试文件
├── .dockerignore              # Dockerfile 忽略文件
├── .editorconfig              # 编辑器配置文件
├── .gitignore                 # Git 忽略文件
├── .shellcheckrc              # ShellCheck 配置文件
├── .stickler.yml              # Stickler 配置文件
├── CHANGELOG.md               # 更改日志
├── Dockerfile                 # Dockerfile 文件
├── LICENSE                    # 许可证文件
├── Makefile                   # Makefile 文件
├── README.md                  # 项目说明文件
├── SPONSORS                   # 赞助商信息
├── go.mod                     # Go 依赖文件
├── go.sum                     # Go 依赖文件
├── herokuish                  # 主程序文件
└── herokuish.go               # 主程序源代码

2. 项目的启动文件介绍

Herokuish 的启动主要是通过 bin/herokuish 文件进行的。这个文件是项目的入口点,通常情况下,你会通过 Docker 来运行这个程序。例如:

docker run --rm -v /abs/app/path:/tmp/app gliderlabs/herokuish /bin/herokuish test

上面的命令会将本地应用源目录挂载到 /tmp/app,然后运行 /bin/herokuish test 命令来进行测试。

3. 项目的配置文件介绍

Herokuish 的配置主要通过环境变量和配置文件进行。以下是一些主要的配置文件:

  • Dockerfile: 这是用来构建 Herokuish 的 Docker 镜像的文件。你可以根据自己的需求修改这个文件,添加或删除一些层。

  • .dockerignore: 这个文件用于指定在构建 Docker 镜像时应该忽略的文件和目录。

  • Makefile: 这个文件定义了构建和测试 Herokuish 的规则。你可以通过运行 make 命令来执行这些规则。

  • herokuish: 这是 Herokuish 的主程序文件,它是用 Go 语言编写的。虽然这个文件不是传统意义上的配置文件,但是你可以通过修改源代码来改变程序的行为。

请注意,Herokuish 还会使用一些环境变量来改变其行为,例如 HEROKUISH_SETUIDGUID 可以用来控制是否降低 root 权限。具体的配置可以根据实际使用情况进行调整。

herokuish Utility for emulating Heroku build and runtime tasks in containers herokuish 项目地址: https://gitcode.com/gh_mirrors/he/herokuish

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史恋姬Quimby

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值