VisionReward项目安装与配置指南

VisionReward项目安装与配置指南

VisionReward VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation VisionReward 项目地址: https://gitcode.com/gh_mirrors/vi/VisionReward

1. 项目基础介绍

VisionReward是一个细粒度、多维度、可解释的奖励模型,旨在捕捉图像和视频中的用户偏好。该模型通过将主观判断分解为可解释的维度,并使用加权评分,提供精确和全面的评估。在视频质量预测方面,VisionReward通过彻底分析动态视频特性,树立了新的基准。

主要编程语言:Python

2. 关键技术和框架

  • 细粒度多维度奖励模型:能够捕捉和评估图像和视频中的用户偏好。
  • 多目标偏好优化(MPO):实现稳定和可控的强化学习,使生成模型能够同时考虑和平衡多个维度的用户偏好。
  • 深度学习框架:使用基于Transformers的模型,如cogvlm2-llama3-chat。

3. 安装和配置

准备工作

在开始安装之前,请确保您的系统中已经安装了以下依赖:

  • Python 3.6或更高版本
  • pip(Python的包管理器)

安装步骤

  1. 克隆项目仓库:

    git clone https://github.com/THUDM/VisionReward.git
    cd VisionReward
    
  2. 安装项目依赖:

    pip install -r requirements.txt
    
  3. 根据需要运行以下命令来进行图像或视频的问答、评分或比较:

    • 图像问答

      python inference-image.py --bf16 --question [[你的问题]]
      

      输入:图像路径 + 提示 + 问题 输出:是/否

    • 视频问答

      python inference-video.py --question [[你的问题]]
      

      输入:视频路径 + 提示 + 问题 输出:是/否

    • 图像评分

      python inference-image.py --bf16 --score
      

      输入:图像路径 + 提示 输出:评分

    • 视频评分

      python inference-video.py --score
      

      输入:视频路径 + 提示 输出:评分

    • 比较两个视频

      python inference-video.py --compare
      

      输入:视频路径1 + 视频路径2 + 提示 输出:更优的视频

请按照上述步骤进行操作,确保每一步都正确执行,以便成功安装和配置VisionReward项目。

VisionReward VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation VisionReward 项目地址: https://gitcode.com/gh_mirrors/vi/VisionReward

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谭思麟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值