VisionReward项目安装与配置指南
1. 项目基础介绍
VisionReward是一个细粒度、多维度、可解释的奖励模型,旨在捕捉图像和视频中的用户偏好。该模型通过将主观判断分解为可解释的维度,并使用加权评分,提供精确和全面的评估。在视频质量预测方面,VisionReward通过彻底分析动态视频特性,树立了新的基准。
主要编程语言:Python
2. 关键技术和框架
- 细粒度多维度奖励模型:能够捕捉和评估图像和视频中的用户偏好。
- 多目标偏好优化(MPO):实现稳定和可控的强化学习,使生成模型能够同时考虑和平衡多个维度的用户偏好。
- 深度学习框架:使用基于Transformers的模型,如cogvlm2-llama3-chat。
3. 安装和配置
准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖:
- Python 3.6或更高版本
- pip(Python的包管理器)
安装步骤
-
克隆项目仓库:
git clone https://github.com/THUDM/VisionReward.git cd VisionReward
-
安装项目依赖:
pip install -r requirements.txt
-
根据需要运行以下命令来进行图像或视频的问答、评分或比较:
-
图像问答:
python inference-image.py --bf16 --question [[你的问题]]
输入:图像路径 + 提示 + 问题 输出:是/否
-
视频问答:
python inference-video.py --question [[你的问题]]
输入:视频路径 + 提示 + 问题 输出:是/否
-
图像评分:
python inference-image.py --bf16 --score
输入:图像路径 + 提示 输出:评分
-
视频评分:
python inference-video.py --score
输入:视频路径 + 提示 输出:评分
-
比较两个视频:
python inference-video.py --compare
输入:视频路径1 + 视频路径2 + 提示 输出:更优的视频
-
请按照上述步骤进行操作,确保每一步都正确执行,以便成功安装和配置VisionReward项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考