AoT项目使用与启动教程

AoT项目使用与启动教程

atom atom 项目地址: https://gitcode.com/gh_mirrors/atom22/atom

1. 项目介绍

AoT(Atom of Thoughts)是一个轻量级、独立实现的Markov LLM测试时间扩展框架。该项目基于论文《Atom of Thoughts for Markov LLM Test-Time Scaling》的原理,旨在提高大型语言模型在推理任务上的性能,同时减少计算浪费。AoT通过将解决方案表示为原子问题的组合,将推理过程转换为一个具有原子状态的Markov过程。状态转换使用两阶段机制:首先将当前问题分解为临时的依赖有向无环图,然后将子问题收缩形成新的原子问题状态。AoT能够与现有的测试时间扩展方法集成,以提升其性能。

2. 项目快速启动

在开始使用AoT之前,您需要配置API密钥和URL。首先,在项目根目录下创建一个apikey.py文件,内容如下:

url = "https://api.openai.com/v1"  # 替换为您的API端点
api_key = [
    "your-api-key-here",  # 替换为您的实际API密钥
    # 可以添加多个API密钥以提高并发性能。
]

接下来,您可以通过以下命令快速启动项目:

python main.py --dataset math --start 0 --end 10 --model gpt-4o-mini

命令参数说明:

  • --dataset: 选择数据集,例如mathgsm8kbbhmmluhotpotqalongbench
  • --start--end: 指定评估的示例范围,例如0-10表示前10个示例。
  • --model: 要使用的LLM模型名称。
  • --mode: 选择atom(主实验)或plugin(生成收缩数据集)。

3. 应用案例和最佳实践

  • 数学推理: AoT可以用于解决数学问题,如通过将问题分解为更小的子问题,然后逐步求解。
  • 多选问题: 对于多选题,AoT可以帮助模型更有效地识别关键信息,从而提高答题准确率。
  • 多跳问答: 在多跳问答场景中,AoT可以优化推理路径,减少不必要的计算。

4. 典型生态项目

目前,AoT项目作为一个独立的推理框架,其生态系统正在不断发展。以下是一些可能与AoT集成的典型项目:

  • AFlow: 一个用于自动机器学习的工作流框架。
  • MetaGPT: 一个开源项目,专注于提升LLM的性能。

通过这些集成,AoT可以进一步扩展其应用场景,提供更加强大的推理能力。

atom atom 项目地址: https://gitcode.com/gh_mirrors/atom22/atom

内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理和生成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动生成精准答案。DeepSeek在此过程中负责问题理解、查询生成、多轮对话和答案解释等核心环节。文章还详细展示了从问题理解、查询生成到答案生成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务和技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提高数据分析效率;③为技术团队提供智能问数系统的架构设计和技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丁淳凝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值