AoT项目使用与启动教程
atom 项目地址: https://gitcode.com/gh_mirrors/atom22/atom
1. 项目介绍
AoT(Atom of Thoughts)是一个轻量级、独立实现的Markov LLM测试时间扩展框架。该项目基于论文《Atom of Thoughts for Markov LLM Test-Time Scaling》的原理,旨在提高大型语言模型在推理任务上的性能,同时减少计算浪费。AoT通过将解决方案表示为原子问题的组合,将推理过程转换为一个具有原子状态的Markov过程。状态转换使用两阶段机制:首先将当前问题分解为临时的依赖有向无环图,然后将子问题收缩形成新的原子问题状态。AoT能够与现有的测试时间扩展方法集成,以提升其性能。
2. 项目快速启动
在开始使用AoT之前,您需要配置API密钥和URL。首先,在项目根目录下创建一个apikey.py
文件,内容如下:
url = "https://api.openai.com/v1" # 替换为您的API端点
api_key = [
"your-api-key-here", # 替换为您的实际API密钥
# 可以添加多个API密钥以提高并发性能。
]
接下来,您可以通过以下命令快速启动项目:
python main.py --dataset math --start 0 --end 10 --model gpt-4o-mini
命令参数说明:
--dataset
: 选择数据集,例如math
、gsm8k
、bbh
、mmlu
、hotpotqa
或longbench
。--start
和--end
: 指定评估的示例范围,例如0-10
表示前10个示例。--model
: 要使用的LLM模型名称。--mode
: 选择atom
(主实验)或plugin
(生成收缩数据集)。
3. 应用案例和最佳实践
- 数学推理: AoT可以用于解决数学问题,如通过将问题分解为更小的子问题,然后逐步求解。
- 多选问题: 对于多选题,AoT可以帮助模型更有效地识别关键信息,从而提高答题准确率。
- 多跳问答: 在多跳问答场景中,AoT可以优化推理路径,减少不必要的计算。
4. 典型生态项目
目前,AoT项目作为一个独立的推理框架,其生态系统正在不断发展。以下是一些可能与AoT集成的典型项目:
- AFlow: 一个用于自动机器学习的工作流框架。
- MetaGPT: 一个开源项目,专注于提升LLM的性能。
通过这些集成,AoT可以进一步扩展其应用场景,提供更加强大的推理能力。
atom 项目地址: https://gitcode.com/gh_mirrors/atom22/atom