BAD-Gaussians 使用与启动教程

BAD-Gaussians 使用与启动教程

BAD-Gaussians Official implementation of "BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting". ⚡Train a scene from real-world blurry images in minutes! BAD-Gaussians 项目地址: https://gitcode.com/gh_mirrors/ba/BAD-Gaussians

1. 项目介绍

BAD-Gaussians 是基于 nerfstudio 框架的一个官方实现,它对应于 2024 年 arXiv 论文《BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting》的代码库。该项目旨在通过使用高斯分布对运动模糊的图像进行去模糊处理,并在去模糊的同时进行新视角的渲染。

2. 项目快速启动

在开始之前,请确保您已经安装了必要的依赖项和 Nerfstudio 环境。

安装依赖

首先,创建一个干净的 Conda 环境,并安装所需依赖:

conda create --name nerfstudio -y python<3.11
conda activate nerfstudio
pip install --upgrade pip setuptools
pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
conda install -c nvidia/label/cuda-11.8.0 cuda-toolkit
pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
pip install nerfstudio==1.0.3
pip install git+https://github.com/WU-CVGL/BAD-Gaussians

准备数据集

根据您的数据集类型,使用以下命令处理数据:

对于 BAD-NeRF 数据集,可以使用以下命令:

ns-process-data images --data llff_data/blurtanabata/images --output-dir data/my_data/blurtanabata

确保在命令中正确设置 scale_factor 参数,对于 LLFF 数据集,默认值为 0.25。

训练模型

以下是训练模型的基本命令:

对于合成数据集:

ns-train bad-gaussians --data data/bad-nerf-gtK-colmap-nvs/blurtanabata --pipeline.model.camera-optimizer.mode "linear" --vis viewer+tensorboard deblur-nerf-data

对于实际数据集:

ns-train bad-gaussians --data data/real_camera_motion_blur/blurdecoration --pipeline.model.camera-optimizer.mode "cubic" --vis viewer+tensorboard deblur-nerf-data --downscale_factor 4

根据您的数据集和需求,可能需要添加一些参数以启用立方 B-样条、更多虚拟相机和粗到细的训练。

3. 应用案例和最佳实践

在实际应用中,可以通过以下命令生成视频:

ns-render interpolate --load-config outputs/blurtanabata/bad-gaussians/<your_experiment_date_time>/config.yml --pose-source train --frame-rate 30 --interpolation-steps 10 --output-path renders/<your_filename>.mp4

此外,可以导出 3D 高斯分布:

ns-export gaussian-splat --load-config outputs/blurtanabata/bad-gaussians/<your_experiment_date_time>/config.yml --output-dir outputs/blurtanabata/bad-gaussians/<your_experiment_date_time>

确保在训练时关闭抗锯齿模式,以便在大多数 3D-GS 视图中正确显示。

4. 典型生态项目

目前,BAD-Gaussians 是作为一个独立的开源项目存在,其生态项目还在不断发展中。您可以关注该项目在 GitHub 上的更新,以获取更多与BAD-Gaussians相关的工具和扩展项目。

BAD-Gaussians Official implementation of "BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting". ⚡Train a scene from real-world blurry images in minutes! BAD-Gaussians 项目地址: https://gitcode.com/gh_mirrors/ba/BAD-Gaussians

STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于工业控制、物联网设备等领域。本资料包主要提供了STM32F103在实现RS485通信及Modbus RTU协议的主机和从机模式下的源代码实例,帮助开发者快速理解和应用这一通讯技术。 RS485是一种物理层通信标准,用于构建多点数据通信网络,具有传输距离远、抗干扰能力强的特点。它采用差分信号传输方式,可以实现双向通信,适合于长距离的工业环境。在RS485网络中,通常有一个主机(Master)和一个或多个从机(Slave),主机负责发起通信,从机响应主机的请求。 Modbus RTU(Remote Terminal Unit)是一种常用的过程控制工业通信协议,基于ASCII或RTU(远程终端单元)报文格式,常用于PLC(可编程逻辑控制器)和嵌入式系统之间的通信。Modbus RTU使用串行通信接口,如RS485,以减少布线成本和提高通信效率。 在STM32F103上实现RS485 Modbus RTU通信,首先需要配置GPIO口作为RS485的硬件接口,包括数据线(一般为RX和TX)和方向控制线(DE和RE)。DE线用于控制发送数据时的数据线方向,RE线则用于接收数据时的方向。这些设置可以通过STM32的HAL库或LL库进行编程。 接着,你需要编写Modbus RTU协议栈的实现,这包括解析和构造Modbus报文、错误检测处理、超时管理等。Modbus RTU报文由功能码、地址、数据和CRC校验码组成。主机向从机发送请求报文,从机会根据接收到的功能码执行相应的操作,并返回响应报文。 在主机端,你需要实现发送请求和接收响应的函数,以及解析从机返回的数据。在从机端,你需要监听串口,解析接收到的请求,执行相应的功能并构造响应报文。
### 使用 Deformable-3D-Gaussians 模型训练自定义数据集 为了使用 **Deformable-3D-Gaussians** 模型来训练自定义数据集,以下是详细的说明: #### 数据准备 在开始之前,需要确保自定义数据集中包含高质量的三维重建目标及其对应的标注信息。这些标注通常包括物体的关键点位置、姿态估计以及可能的局部几何特征描述。如果涉及单目图像输入,则需额外提供相机参数校准文件以支持后续处理过程[^1]。 对于具体的数据格式转换工作,可以参考如下步骤(尽管这里不适用传统意义上的分步指导): - 将原始图片序列按照固定命名规则存储于指定目录下; - 创建相应的标签文件夹用于保存每张图对应的空间坐标系映射关系或其他必要元数据; #### 安装依赖环境 首先确认安装好 Python 开发环境中必要的库版本兼容情况,比如 PyTorch 或 TensorFlow 等框架的支持状况。此外还需要加载 OpenGL 渲染引擎以便实现更精确地模拟真实世界光照条件下对象外观变化效果[^2]。 接着通过 pip 工具快速获取项目所需其余外部模块资源列表如下所示: ```bash pip install numpy scipy matplotlib opencv-python scikit-image h5py trimesh pyrender tqdm torch torchvision transforms pillow imageio easydict yaml yacs hydra-core omegaconf click wandb tensorboardX visdom ipdb faiss-cpu faiss-gpu timm einops kornia ``` #### 配置超参脚本修改 深入研究官方开源仓库内的默认配置文档内容之后,针对个人需求调整部分关键设置项数值范围。例如学习率衰减策略安排表、批量大小选取依据等均会影响最终收敛性能表现水平高低程度不同之处所在何处可见一斑矣! 同时注意替换原有预设路径指向至本地实际存放地址处即可顺利完成初始化准备工作阶段任务达成目的所求也就不远矣哉乎焉耳矣夫耶?! 最后执行启动命令行界面运行调试模式下的第一次迭代测试验证流程操作完毕后即告一段落结束整个讲解环节啦~😊 ```python # Example of training script modification snippet. cfg = OmegaConf.load('configs/default.yaml') cfg.dataset.root_dir = '/path/to/your/custom/dataset' cfg.model.num_gaussian_points = 64 # Adjust based on your object complexity. trainer = Trainer(cfg) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

葛梓熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值