【亲测免费】 Monodepth2 项目使用教程

Monodepth2 项目使用教程

monodepth2 [ICCV 2019] Monocular depth estimation from a single image monodepth2 项目地址: https://gitcode.com/gh_mirrors/mo/monodepth2

1. 项目目录结构及介绍

Monodepth2 项目的目录结构如下:

monodepth2/
├── assets/
├── datasets/
├── experiments/
├── networks/
├── splits/
├── .gitignore
├── LICENSE
├── README.md
├── depth_prediction_example.ipynb
├── evaluate_depth.py
├── evaluate_pose.py
├── export_gt_depth.py
├── kitti_utils.py
├── layers.py
├── options.py
├── test_simple.py
├── train.py
├── trainer.py
└── utils.py

目录结构介绍

  • assets/: 存放示例图像和其他资源文件。
  • datasets/: 存放数据集相关的脚本和配置文件。
  • experiments/: 存放实验相关的文件和配置。
  • networks/: 存放深度估计模型的网络结构定义。
  • splits/: 存放数据集的分割文件。
  • .gitignore: Git 忽略文件配置。
  • LICENSE: 项目许可证文件。
  • README.md: 项目介绍和使用说明。
  • depth_prediction_example.ipynb: 深度预测的 Jupyter Notebook 示例。
  • evaluate_depth.py: 深度评估脚本。
  • evaluate_pose.py: 姿态评估脚本。
  • export_gt_depth.py: 导出真实深度图的脚本。
  • kitti_utils.py: KITTI 数据集的工具函数。
  • layers.py: 网络层的定义。
  • options.py: 训练和测试的参数配置。
  • test_simple.py: 单张图像的深度预测脚本。
  • train.py: 训练脚本。
  • trainer.py: 训练器的实现。
  • utils.py: 通用工具函数。

2. 项目启动文件介绍

test_simple.py

test_simple.py 是用于对单张图像进行深度预测的启动文件。你可以使用以下命令来预测单张图像的深度:

python test_simple.py --image_path assets/test_image.jpg --model_name mono+stereo_640x192

train.py

train.py 是用于训练深度估计模型的启动文件。你可以使用以下命令来启动训练:

python train.py --model_name mono_model

3. 项目的配置文件介绍

options.py

options.py 文件包含了训练和测试的所有参数配置。你可以通过修改这个文件中的参数来调整训练和测试的行为。例如:

class MonodepthOptions:
    def __init__(self):
        self.parser = argparse.ArgumentParser(description="Monodepthv2 options")
        # 数据路径
        self.parser.add_argument("--data_path", type=str, help="path to the training data", default="./kitti_data")
        # 模型名称
        self.parser.add_argument("--model_name", type=str, help="the name of the folder to save the model in", default="mdp")
        # 学习率
        self.parser.add_argument("--learning_rate", type=float, help="learning rate", default=1e-4)
        # 其他参数...

通过修改这些参数,你可以自定义训练和测试的行为。

train.py 中的配置

train.py 文件中,你可以通过命令行参数来配置训练过程。例如:

python train.py --model_name mono_model --learning_rate 5e-5 --batch_size 8

这些参数会覆盖 options.py 中的默认配置。

总结

通过本教程,你应该能够了解 Monodepth2 项目的目录结构、启动文件和配置文件的基本使用方法。你可以根据需要进一步探索和修改这些文件,以满足你的具体需求。

monodepth2 [ICCV 2019] Monocular depth estimation from a single image monodepth2 项目地址: https://gitcode.com/gh_mirrors/mo/monodepth2

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 复现 Monodepth2 项目教程 #### 准备工作环境 为了成功复现Monodepth2项目,首先需要设置合适的工作环境。这通常涉及安装Python以及必要的库和工具包。 确保已安装`git`用于克隆GitHub仓库,并配置好Anaconda或Miniconda以便管理不同的Python环境[^1]。 ```bash # 安装依赖项并创建新的Conda环境 conda create -n monodepth2 python=3.7 conda activate monodepth2 pip install torch torchvision matplotlib opencv-python-headless numpy tqdm scikit-image tensorboardX imageio visdom future gdown onnxruntime ``` #### 获取源代码与预训练模型 访问官方GitHub页面获取最新的Monodepth2源码版本。此外,还需下载预先训练好的权重文件以加速开发过程或验证实现的有效性。 ```bash # 克隆Monodepth2存储库 git clone https://github.com/nianticlabs/monodepth2.git cd monodepth2/ # 下载预训练模型 gdown --id 1tH8yf95oVZjFwzrEJLdKUWbPmYsDQpzi # KITTI模型为例 tar -xf models.zip rm models.zip ``` #### 数据准备 根据所选的数据集调整路径变量,在此阶段可能还需要对原始数据执行一些预处理操作,比如裁剪、缩放等。对于某些特定应用领域(如自动驾驶),可以考虑使用KITTI这样的公开可用数据集来进行初步试[^4]。 #### 修改配置文件 编辑`options.py`中的超参数设定,包括但不限于批量大小(batch size)、迭代次数(number of epochs),以及其他影响性能的关键因素。注意保持默认值不变除非有充分理由改变它们。 #### 开始训练 一旦所有准备工作都已完成,则可以通过运行脚本来启动实际的训练流程: ```bash python train.py \ --data_path=/path/to/dataset \ --log_dir=./models/kitti_resnet_multi \ --model_name=kitti_resnet_multi \ --split=eigen_zhou \ --num_layers=18 \ --height=192 \ --width=640 \ --disparity_smoothness=1e-3 \ --scales=[0,1,2,3] \ --min_depth=0.1 \ --max_depth=100.0 \ --frame_ids=[0,-1,1] \ --batch_size=12 \ --num_epochs=20 \ --save_frequency=1 ``` 上述命令行选项定义了一个典型的训练会话;当然也可以依据个人需求灵活调整各个参数的具体取值范围[^3]。 #### 试与评估 当训练完成后,可利用保存下来的checkpoint加载最佳模型并对新样本进行推理分析。同时还可以借助多种量化指标衡量最终成果的质量优劣程度。 ```python from layers import * import networks import datasets import utils opts = Options() opts.load_model() encoder = networks.ResnetEncoder(opts.num_layers, False) depth_decoder = networks.DepthDecoder(num_ch_enc=encoder.num_ch_enc) loaded_dict_enc = torch.load(os.path.join(opts.log_dir, "encoder.pth")) filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()} encoder.load_state_dict(filtered_dict_dec) loaded_dict = torch.load(os.path.join(opts.log_dir, "depth.pth")) depth_decoder.load_state_dict(loaded_dict) encoder.eval() depth_decoder.eval() with torch.no_grad(): output = depth_decoder(encoder(input_image)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花淑云Nell

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值