LVM-Med 项目安装与配置指南

LVM-Med 项目安装与配置指南

LVM-Med LVM-Med 项目地址: https://gitcode.com/gh_mirrors/lv/LVM-Med

1. 项目基础介绍

LVM-Med 是一个基于医学影像的大规模自监督视觉模型学习项目。它通过第二阶图匹配公式统一了当前的对比和无实例自监督学习(SSL),旨在推动医学影像分析领域的发展。该项目的主要编程语言是 Python。

2. 项目使用的关键技术和框架

项目使用的关键技术包括:

  • 第二阶图匹配:一种统一对比和无实例自监督学习的方法。
  • ResNet-50 和 ViT-B 架构:作为模型的基础结构。
  • PyTorch:深度学习框架,用于模型的开发和训练。

项目依赖的主要框架和库包括:

  • Python:基础的编程语言环境。
  • PyTorch:深度学习框架。
  • TorchVision:PyTorch 的视觉库。
  • segmentation-models.pytorch:用于图像分割的 PyTorch 模型库。

3. 项目安装和配置准备工作

在开始安装之前,请确保您的计算机满足以下要求:

  • Python 版本 3.8 或更高。
  • PyTorch 和 TorchVision 库已安装并支持 CUDA(如果您的计算机有 NVIDIA GPU)。

详细安装步骤

步骤 1:克隆项目仓库

打开命令行工具,执行以下命令克隆项目仓库:

git clone https://github.com/duyhominhnguyen/LVM-Med.git
cd LVM-Med
步骤 2:创建虚拟环境

创建一个名为 lvm_med 的虚拟环境,并激活它:

conda env create -f lvm_med.yml
conda activate lvm_med
步骤 3:安装依赖

在虚拟环境中,安装项目所需的所有依赖。首先安装 segmentation-models.pytorch:

git clone https://github.com/qubvel/segmentation_models.pytorch.git
cd segmentation_models.pytorch
pip install -e
cd ..

然后将 segmentation_models_pytorch_example 文件夹中的 __init__.pyresnet.py 文件移动到 segmentation_models.pytorch/segmentation_models_pytorch/encoders 目录下:

mv segmentation_models_pytorch_example/encoders/__init__.py segmentation_models.pytorch/segmentation_models_pytorch/encoders/__init__.py
mv segmentation_models_pytorch_example/encoders/resnet.py segmentation_models.pytorch/segmentation_models_pytorch/encoders/resnet.py
步骤 4:准备数据集

根据您的需求下载相应的数据集,并将数据集文件夹移动到项目中的 dataset_demo 文件夹下。然后根据数据集的名称运行以下命令准备数据:

python prepare_dataset.py -ds [dataset_name]

替换 [dataset_name] 为您的数据集名称。

步骤 5:配置数据加载器

编辑 dataloader/yaml_data 中的 YAML 配置文件,确保其中的路径指向您的数据集。

完成以上步骤后,您就可以开始使用 LVM-Med 进行医学影像分析工作了。

LVM-Med LVM-Med 项目地址: https://gitcode.com/gh_mirrors/lv/LVM-Med

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨洲泳Egerton

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值