LVM-Med 项目安装与配置指南
LVM-Med 项目地址: https://gitcode.com/gh_mirrors/lv/LVM-Med
1. 项目基础介绍
LVM-Med 是一个基于医学影像的大规模自监督视觉模型学习项目。它通过第二阶图匹配公式统一了当前的对比和无实例自监督学习(SSL),旨在推动医学影像分析领域的发展。该项目的主要编程语言是 Python。
2. 项目使用的关键技术和框架
项目使用的关键技术包括:
- 第二阶图匹配:一种统一对比和无实例自监督学习的方法。
- ResNet-50 和 ViT-B 架构:作为模型的基础结构。
- PyTorch:深度学习框架,用于模型的开发和训练。
项目依赖的主要框架和库包括:
- Python:基础的编程语言环境。
- PyTorch:深度学习框架。
- TorchVision:PyTorch 的视觉库。
- segmentation-models.pytorch:用于图像分割的 PyTorch 模型库。
3. 项目安装和配置准备工作
在开始安装之前,请确保您的计算机满足以下要求:
- Python 版本 3.8 或更高。
- PyTorch 和 TorchVision 库已安装并支持 CUDA(如果您的计算机有 NVIDIA GPU)。
详细安装步骤
步骤 1:克隆项目仓库
打开命令行工具,执行以下命令克隆项目仓库:
git clone https://github.com/duyhominhnguyen/LVM-Med.git
cd LVM-Med
步骤 2:创建虚拟环境
创建一个名为 lvm_med
的虚拟环境,并激活它:
conda env create -f lvm_med.yml
conda activate lvm_med
步骤 3:安装依赖
在虚拟环境中,安装项目所需的所有依赖。首先安装 segmentation-models.pytorch:
git clone https://github.com/qubvel/segmentation_models.pytorch.git
cd segmentation_models.pytorch
pip install -e
cd ..
然后将 segmentation_models_pytorch_example
文件夹中的 __init__.py
和 resnet.py
文件移动到 segmentation_models.pytorch/segmentation_models_pytorch/encoders
目录下:
mv segmentation_models_pytorch_example/encoders/__init__.py segmentation_models.pytorch/segmentation_models_pytorch/encoders/__init__.py
mv segmentation_models_pytorch_example/encoders/resnet.py segmentation_models.pytorch/segmentation_models_pytorch/encoders/resnet.py
步骤 4:准备数据集
根据您的需求下载相应的数据集,并将数据集文件夹移动到项目中的 dataset_demo
文件夹下。然后根据数据集的名称运行以下命令准备数据:
python prepare_dataset.py -ds [dataset_name]
替换 [dataset_name]
为您的数据集名称。
步骤 5:配置数据加载器
编辑 dataloader/yaml_data
中的 YAML 配置文件,确保其中的路径指向您的数据集。
完成以上步骤后,您就可以开始使用 LVM-Med 进行医学影像分析工作了。
LVM-Med 项目地址: https://gitcode.com/gh_mirrors/lv/LVM-Med