emnapi 的安装和配置教程

emnapi 的安装和配置教程

emnapi Node-API implementation for Emscripten, wasi-sdk, clang wasm32 and napi-rs emnapi 项目地址: https://gitcode.com/gh_mirrors/em/emnapi

1. 项目基础介绍和主要编程语言

emnapi 是一个开源项目,它旨在将 Node.js 的 API 集成到 WebAssembly 中,以便能够在浏览器环境中运行 Node.js 代码。该项目的主要编程语言是 C++,因为它需要直接与 Node.js 的底层 C/C++ 代码交互,同时也使用了一些 JavaScript 代码来处理与浏览器的交互。

2. 项目使用的关键技术和框架

该项目使用了一些关键技术和框架,包括但不限于:

  • Node.js: 项目的基础是 Node.js,它是一个基于 Chrome V8 引擎的 JavaScript 运行环境。
  • WebAssembly: 用于在网页上运行 C++ 代码的技术。
  • Emscripten: 一个工具链,用于将 C/C++ 代码编译为 WebAssembly。
  • CMake: 一个跨平台的安装(编译)工具,可以用来配置项目并生成适合不同平台的 Makefile。

3. 项目安装和配置的准备工作及详细步骤

准备工作

在开始安装 emnapi 之前,请确保您的系统已经安装以下软件:

  • Git: 用于克隆项目代码。
  • CMake: 用于项目配置。
  • Emscripten: 用于编译 C++ 代码到 WebAssembly。
  • Node.js: 项目的基础运行环境。

安装步骤

  1. 克隆项目代码到本地:

    git clone https://github.com/toyobayashi/emnapi.git
    cd emnapi
    
  2. 配置项目:

    mkdir build
    cd build
    cmake ..
    
  3. 编译项目:

    emmake make
    
  4. 构建完成后,会在 build 目录下生成可执行文件和相应的 JavaScript 绑定。

  5. 将生成的文件集成到你的 Web 项目中,你可以参考项目文档中提供的示例来使用 emnapi

请注意,以上步骤提供了一个基本的安装流程,具体细节可能因操作系统和环境的差异而有所不同。在安装过程中遇到问题时,请参考项目的官方文档或向社区寻求帮助。

emnapi Node-API implementation for Emscripten, wasi-sdk, clang wasm32 and napi-rs emnapi 项目地址: https://gitcode.com/gh_mirrors/em/emnapi

内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理生成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动生成精准答案。DeepSeek在此过程中负责问题理解、查询生成、多轮对话答案解释等核心环节。文章还详细展示了从问题理解、查询生成到答案生成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提高数据分析效率;③为技术团队提供智能问数系统的架构设计技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
PSO-ELM,即粒子群优化极限学习机,是一种将粒子群优化算法(PSO)与极限学习机(ELM)相结合的机器学习方法。本次提供的压缩包中包含基于 MATLAB 实现的 PSO-ELM 源代码,版本为 V3.0,旨在通过 PSO 的全局搜索能力优化 ELM 的隐藏层节点参数,从而提升其学习效率与预测性能 。 PSO 是一种基于群体智能的全局优化算法,灵感来源于鸟群觅食行为。在该算法中,每个解决方案被视为一个“粒子”,在解空间中飞行并根据自身最佳位置(个体极值)群体最佳位置(全局极值)来调整速度与位置。PSO 具有简单易实现、能处理多模态高维问题以及易于并行化的优点 。 ELM 是一种快速单隐藏层前馈神经网络训练方法,由 Huang 等人提出。其核心思想是随机生成隐藏层节点的输入权重偏置,再通过最小二乘法一次性求解输出层权重,大大提高了训练速度。ELM 在模式识别、回归分析时间序列预测等多个领域表现出色 。 在 PSO-ELM 中,PSO 负责优化 ELM 的隐藏层节点参数,包括输入权重偏置。借助 PSO 的全局搜索特性,能够找到更优的隐藏层参数组合,进而增强 ELM 的泛化能力,尤其在解决非线性复杂问题时,相比传统 ELM 性能更优 。 MATLAB 是一款广泛应用于数值计算数据可视化的数学计算及编程环境。PSO-ELM V3.0 的 MATLAB 源码涵盖了完整的算法流程,用户可通过修改参数设置以适应不同问题。代码通常包含初始化粒子群、迭代过程、性能评估等关键部分,便于研究人员理解调整 。 PSO-ELM 在众多领域有广泛应用,如信号处理(声音识别、图像处理等)中可用于提高特征提取分类的准确性;在工业设备的故障诊断中,能提前预测故障并减少停机时间;在经济预测领域,如股票价格预测,其高精度快速训练速度使其成为实用工具;在电力系统中,可用于电力负荷预测电力系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨洲泳Egerton

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值