UNeXt-pytorch 项目使用教程

UNeXt-pytorch 项目使用教程

UNeXt-pytorch Official Pytorch Code base for "UNeXt: MLP-based Rapid Medical Image Segmentation Network", MICCAI 2022 UNeXt-pytorch 项目地址: https://gitcode.com/gh_mirrors/un/UNeXt-pytorch

1. 项目的目录结构及介绍

UNeXt-pytorch 项目目录结构如下:

UNeXt-pytorch/
├── __pycache__
├── imgs
├── LICENSE
├── README.md
├── archs.py           # 网络架构定义
├── config.py          # 配置文件
├── dataset.py         # 数据集处理
├── losses.py          # 损失函数定义
├── metrics.py         # 评价指标定义
├── post_process.py    # 后处理操作
├── train.py           # 训练脚本
├── utils.py           # 工具类
├── val.py             # 验证脚本
└── environment.yml    # 环境配置文件
  • archs.py: 包含了网络架构的定义,主要是 UNeXt 网络的结构。
  • config.py: 包含了项目配置信息,如模型参数、训练参数等。
  • dataset.py: 处理数据集的加载和预处理。
  • losses.py: 定义了用于训练的损失函数。
  • metrics.py: 定义了评估模型性能的评价指标。
  • post_process.py: 包含了模型预测后的后处理步骤。
  • train.py: 是项目的主要启动文件,用于启动模型的训练过程。
  • val.py: 用于模型验证和性能评估的脚本。
  • environment.yml: 定义了项目运行所需的Python环境和依赖库。

2. 项目的启动文件介绍

项目的启动文件是 train.py,它负责初始化训练过程。以下是一些主要的命令行参数:

  • --dataset <dataset name>: 指定要使用的数据集名称。
  • --arch UNext: 指定使用的网络架构为 UNeXt。
  • --name <exp name>: 指定实验名称,用于保存训练日志和模型权重。
  • --img_ext .png: 指定输入图像的文件扩展名。
  • --mask_ext .png: 指定标签图像的文件扩展名。
  • --lr 0.0001: 设置学习率。
  • --epochs 500: 设置训练的总轮数。
  • --input_w 512: 设置输入图像的宽度。
  • --input_h 512: 设置输入图像的高度。
  • --b 8: 设置训练批次大小。

启动训练的命令示例:

python train.py --dataset your_dataset --arch UNext --name experiment1 --img_ext .png --mask_ext .png --lr 0.0001 --epochs 500 --input_w 512 --input_h 512 --b 8

3. 项目的配置文件介绍

项目的配置文件是 config.py,它包含了项目的所有配置信息。配置文件通常包含以下部分:

  • ModelConfig: 包含了模型的结构参数,如网络的各个层的配置。
  • TrainConfig: 包含了训练过程中的参数,如学习率、批次大小、训练轮数等。
  • DatasetConfig: 包含了数据集的路径、预处理步骤等信息。

配置文件允许用户在不修改代码的情况下,通过改变配置来调整模型训练的行为。这样做可以增加项目的灵活性和易于维护。

UNeXt-pytorch Official Pytorch Code base for "UNeXt: MLP-based Rapid Medical Image Segmentation Network", MICCAI 2022 UNeXt-pytorch 项目地址: https://gitcode.com/gh_mirrors/un/UNeXt-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈冉茉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值