Kumo Search 开源项目使用教程

Kumo Search 开源项目使用教程

kumo-search docs for search system and ai infra kumo-search 项目地址: https://gitcode.com/gh_mirrors/ku/kumo-search

1. 项目介绍

Kumo Search 是一个端到端的搜索引擎框架,支持全文检索、倒排索引、正排索引、排序、缓存、索引分层、干预系统、特征收集、离线计算和存储系统等功能。它运行在 EA(Elastic automic infrastructure architecture)平台上,支持多机房、多集群的工程自动化、服务治理、实时数据、服务降级与容灾等功能。

2. 项目快速启动

环境准备

确保您的系统中安装了以下依赖:

  • GCC 9.3 或更高版本
  • Python 3.10 或更高版本
  • CMake
  • Carbin(C++ 包管理器)

克隆项目

git clone https://github.com/gottingen/kumo-search.git
cd kumo-search

安装依赖

使用 Carbin 安装项目依赖:

carbin install

编译项目

使用 CMake 编译项目:

mkdir build && cd build
cmake ..
make

运行服务

启动 Kumo Search 服务:

./sirius

3. 应用案例和最佳实践

案例一:简单的搜索引擎实现

// 示例代码,创建一个简单的搜索引擎
#include <kumo/search_engine.hpp>

int main() {
    // 初始化搜索引擎
    kumo::search_engine engine;

    // 添加文档
    engine.add_document("doc1", "这是一个文档的内容");

    // 搜索
    auto results = engine.search("文档");

    // 输出搜索结果
    for (const auto& result : results) {
        std::cout << "找到文档: " << result.doc_id << " - " << result.content << std::endl;
    }

    return 0;
}

最佳实践

  • 针对不同的数据量,选择合适的索引策略。
  • 利用 Kumo Search 的动态更新特性,快速迭代搜索引擎。
  • 在 EA 平台上实现自动化部署,提升运维效率。

4. 典型生态项目

  • Collie:引用外部 header only library 如 jason,toml 等,统一管理。
  • Turbo:提供 hash,log,容器类,字符串相关操作。
  • Alkaid:文件系统封装、本地文件,HDFS,S3 等。
  • Mizar:基于 RocksDB,ToplingDB 存储引擎内核。

以上就是 Kumo Search 开源项目的使用教程,希望对您有所帮助。

kumo-search docs for search system and ai infra kumo-search 项目地址: https://gitcode.com/gh_mirrors/ku/kumo-search

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郁虹宝Lucille

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值