Kumo Search 开源项目使用教程
1. 项目介绍
Kumo Search 是一个端到端的搜索引擎框架,支持全文检索、倒排索引、正排索引、排序、缓存、索引分层、干预系统、特征收集、离线计算和存储系统等功能。它运行在 EA(Elastic automic infrastructure architecture)平台上,支持多机房、多集群的工程自动化、服务治理、实时数据、服务降级与容灾等功能。
2. 项目快速启动
环境准备
确保您的系统中安装了以下依赖:
- GCC 9.3 或更高版本
- Python 3.10 或更高版本
- CMake
- Carbin(C++ 包管理器)
克隆项目
git clone https://github.com/gottingen/kumo-search.git
cd kumo-search
安装依赖
使用 Carbin 安装项目依赖:
carbin install
编译项目
使用 CMake 编译项目:
mkdir build && cd build
cmake ..
make
运行服务
启动 Kumo Search 服务:
./sirius
3. 应用案例和最佳实践
案例一:简单的搜索引擎实现
// 示例代码,创建一个简单的搜索引擎
#include <kumo/search_engine.hpp>
int main() {
// 初始化搜索引擎
kumo::search_engine engine;
// 添加文档
engine.add_document("doc1", "这是一个文档的内容");
// 搜索
auto results = engine.search("文档");
// 输出搜索结果
for (const auto& result : results) {
std::cout << "找到文档: " << result.doc_id << " - " << result.content << std::endl;
}
return 0;
}
最佳实践
- 针对不同的数据量,选择合适的索引策略。
- 利用 Kumo Search 的动态更新特性,快速迭代搜索引擎。
- 在 EA 平台上实现自动化部署,提升运维效率。
4. 典型生态项目
- Collie:引用外部 header only library 如 jason,toml 等,统一管理。
- Turbo:提供 hash,log,容器类,字符串相关操作。
- Alkaid:文件系统封装、本地文件,HDFS,S3 等。
- Mizar:基于 RocksDB,ToplingDB 存储引擎内核。
以上就是 Kumo Search 开源项目的使用教程,希望对您有所帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考