SeeSR项目使用教程
1. 项目目录结构及介绍
SeeSR项目是一个用于实现语义感知的真实世界图像超分辨率的开源项目。项目目录结构如下:
SeeSR/
├── asserts/ # 存放断言相关文件
├── basicsr/ # BasicsR相关代码
├── dataloaders/ # 数据加载器相关代码
├── figs/ # 存放图表和相关图像
├── models/ # 模型定义和实现
├── pipelines/ # 数据处理流程相关代码
├── preset/ # 预设配置文件夹
│ ├── datasets/ # 存放数据集
│ ├── models/ # 存放预训练模型
│ ├── scripts/ # 脚本文件夹
│ └── utils/ # 实用工具代码
├── scripts/ # 脚本文件夹
├── test_seesr.py # 测试SeeSR模型的脚本
├── test_seesr_turbo.py # 测试SeeSR加速版本的脚本
├── train_seesr.py # 训练SeeSR模型的脚本
├── utils/ # 实用工具代码
├── utils_data/ # 数据处理工具代码
├── LICENSE # 项目许可证文件
└── README.md # 项目说明文件
2. 项目的启动文件介绍
项目的启动主要是通过运行脚本文件来进行的。以下是一些主要的启动文件及其作用:
train_seesr.py
:用于启动SeeSR模型的训练过程。test_seesr.py
:用于测试和验证SeeSR模型的性能。test_seesr_turbo.py
:用于测试SeeSR模型的加速版本。
运行这些脚本前,需要确保已经正确配置了项目环境并安装了所有必要的依赖。
3. 项目的配置文件介绍
项目的配置文件主要位于preset/
目录下,以下是几个重要的配置文件:
dape.yaml
:DAPE模型的配置文件,包含了训练DAPE模型时的参数设置,如学习率、批次大小、优化器等。train_seesr.yaml
:SeeSR模型训练的配置文件,包含了训练过程中的参数设置。
这些配置文件使用YAML格式,可以通过修改这些文件来调整模型的训练和测试参数,以适应不同的需求和硬件条件。在训练或测试前,应该仔细检查和配置这些文件。