MagicPIG: GPU-CPU协同的LLM推理优化框架
1. 项目介绍
MagicPIG(GPU-CPU协同的Locality-Sensitive Hashing LLM推理优化框架)是一个为了探索GPU-CPU系统在Locality-Sensitive Hashing(LSH)支持下的可能性的开源项目。该框架通过LSH采样技术,显著提高了大型语言模型(LLM)的推理效率,能够在不同的应用场景下,通过GPU和CPU的协同工作,实现推理性能的大幅提升。
2. 项目快速启动
环境准备
- 硬件要求:支持AVX512的Intel CPU。若使用BFloat16,需要支持AVX512_BF16的Intel CPU,GCC版本需大于等于11。
- 推荐Python版本:3.9/3.10。
安装步骤
# 创建并激活虚拟环境
conda create -n magicpig
conda activate magicpig
# 安装依赖
bash install.sh
生成示例
# 进入示例目录
cd examples
# 执行生成命令
numactl -C 0-31,52-83 -m 0,1 \
python generation.py \
--model meta-llama/Meta-Llama-3.1-8B-Instruct \
--M 8192 \
--G 256 \
--K 10 \
--L 170 \
--template meta-llama3 \
--data ../data/story.txt
基准测试
# 进入示例目录
cd examples
# 执行基准测试命令
numactl -C 0-31,52-83 -m 0,1 \
python bench.py \
--model meta-llama/Meta-Llama-3.1-8B-Instruct \
--B 1 \
--P 98000 \
--M 98304 \
--K 10 \
--L 150
3. 应用案例和最佳实践
MagicPIG框架的应用案例包括但不限于自然语言处理中的文本生成、推理等任务。以下是一些最佳实践:
- 参数调优:根据具体任务和硬件条件,调整LSH的
K
和L
参数,以获得最佳性能。 - 资源分配:合理分配GPU和CPU资源,确保系统在多任务处理时能够高效运行。
4. 典型生态项目
目前,MagicPIG项目支持以下模型:
llama3-8b-chat-128k
:meta-llama/Llama-3.1-8B-Instruct
llama3-8b-chat-512k
:princeton-nlp/Llama-3-8B-ProLong-512k-Instruct
mistral-7b-chat-512k
:aws-prototyping/MegaBeam-Mistral-7B-512k
llama3-70b-chat-128k
:meta-llama/Llama-3.1-70B-Instruct
以上是MagicPIG项目的简要介绍和快速启动指南。用户可以根据具体的任务需求和硬件条件,进一步探索和优化框架的使用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考