MagicPIG: GPU-CPU协同的LLM推理优化框架

MagicPIG: GPU-CPU协同的LLM推理优化框架

MagicPIG [ICLR2025 Spotlight] MagicPIG: LSH Sampling for Efficient LLM Generation MagicPIG 项目地址: https://gitcode.com/gh_mirrors/ma/MagicPIG

1. 项目介绍

MagicPIG(GPU-CPU协同的Locality-Sensitive Hashing LLM推理优化框架)是一个为了探索GPU-CPU系统在Locality-Sensitive Hashing(LSH)支持下的可能性的开源项目。该框架通过LSH采样技术,显著提高了大型语言模型(LLM)的推理效率,能够在不同的应用场景下,通过GPU和CPU的协同工作,实现推理性能的大幅提升。

2. 项目快速启动

环境准备

  • 硬件要求:支持AVX512的Intel CPU。若使用BFloat16,需要支持AVX512_BF16的Intel CPU,GCC版本需大于等于11。
  • 推荐Python版本:3.9/3.10。

安装步骤

# 创建并激活虚拟环境
conda create -n magicpig
conda activate magicpig

# 安装依赖
bash install.sh

生成示例

# 进入示例目录
cd examples

# 执行生成命令
numactl -C 0-31,52-83 -m 0,1 \
python generation.py \
--model meta-llama/Meta-Llama-3.1-8B-Instruct \
--M 8192 \
--G 256 \
--K 10 \
--L 170 \
--template meta-llama3 \
--data ../data/story.txt

基准测试

# 进入示例目录
cd examples

# 执行基准测试命令
numactl -C 0-31,52-83 -m 0,1 \
python bench.py \
--model meta-llama/Meta-Llama-3.1-8B-Instruct \
--B 1 \
--P 98000 \
--M 98304 \
--K 10 \
--L 150

3. 应用案例和最佳实践

MagicPIG框架的应用案例包括但不限于自然语言处理中的文本生成、推理等任务。以下是一些最佳实践:

  • 参数调优:根据具体任务和硬件条件,调整LSH的KL参数,以获得最佳性能。
  • 资源分配:合理分配GPU和CPU资源,确保系统在多任务处理时能够高效运行。

4. 典型生态项目

目前,MagicPIG项目支持以下模型:

  • llama3-8b-chat-128kmeta-llama/Llama-3.1-8B-Instruct
  • llama3-8b-chat-512kprinceton-nlp/Llama-3-8B-ProLong-512k-Instruct
  • mistral-7b-chat-512kaws-prototyping/MegaBeam-Mistral-7B-512k
  • llama3-70b-chat-128kmeta-llama/Llama-3.1-70B-Instruct

以上是MagicPIG项目的简要介绍和快速启动指南。用户可以根据具体的任务需求和硬件条件,进一步探索和优化框架的使用。

MagicPIG [ICLR2025 Spotlight] MagicPIG: LSH Sampling for Efficient LLM Generation MagicPIG 项目地址: https://gitcode.com/gh_mirrors/ma/MagicPIG

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

包怡妹Alina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值