Weebo 实时语音聊天机器人使用教程

Weebo 实时语音聊天机器人使用教程

weebo A real-time speech-to-speech chatbot powered by Whisper Small, Llama 3.2, and Kokoro-82M. weebo 项目地址: https://gitcode.com/gh_mirrors/we/weebo

1. 项目介绍

Weebo 是一个基于 Whisper Small、Llama 3.2 和 Kokoro-82M 构建的实时语音到语音聊天机器人。该机器人可在 Apple Silicon 上运行,支持连续语音识别、自然语言响应、实时文本到语音合成,并支持多种不同的声音。Weebo 通过流式响应生成,提供更加自然的交流体验。

2. 项目快速启动

环境准备

首先,确保您的系统中已安装 Python 3.12。然后,按照以下步骤准备项目环境:

# 创建虚拟环境
python3 -m venv .venv
# 激活虚拟环境
source .venv/bin/activate
# 安装依赖
pip install -r requirements.txt

下载模型

在启动项目之前,需要下载所需的模型文件:

# 下载 kokoro TTS 模型
wget https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/kokoro-v0_19.onnx

# 使用 Ollama 拉取 llama3.2 模型
ollama pull llama3.2

对于 Mac 用户,还需要安装 espeak-ng 并设置环境变量:

brew install espeak-ng
export ESPEAK_DATA_PATH=/opt/homebrew/share/espeak-ng-data

运行聊天机器人

使用以下命令启动聊天机器人:

uv run --python 3.12 --with-requirements requirements.txt main.py

程序将开始监听语音输入。自然地说话并稍作停顿,机器人会以合成的语音回应。要停止程序,按下 Ctrl+C。

或者,您也可以创建一个环境并安装依赖:

python main.py

3. 应用案例和最佳实践

Weebo 可以用于多种场景,如智能客服、语音助手、交互式学习工具等。以下是一些最佳实践:

  • 确保在安静的环境中使用 Weebo,以获得最佳的语音识别效果。
  • 根据需要调整机器人使用的声音,以适应不同的应用场景。
  • 利用 Weebo 的连续语音识别功能,可以创建更加流畅的对话体验。

4. 典型生态项目

Weebo 作为开源项目,可以与以下生态项目结合使用,以扩展其功能:

  • Whisper:用于语音识别的强大模型,可以与 Weebo 结合提供更准确的语音转文字功能。
  • Llama:用于生成自然语言响应的模型,可以增强 Weebo 的对话能力。
  • Kokoro:实时文本到语音合成引擎,为 Weebo 提供高质量的语音输出。

通过整合这些项目,开发者可以构建出更加完善的语音交互系统。

weebo A real-time speech-to-speech chatbot powered by Whisper Small, Llama 3.2, and Kokoro-82M. weebo 项目地址: https://gitcode.com/gh_mirrors/we/weebo

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邱廷彭Maria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值