Weebo 实时语音聊天机器人使用教程
1. 项目介绍
Weebo 是一个基于 Whisper Small、Llama 3.2 和 Kokoro-82M 构建的实时语音到语音聊天机器人。该机器人可在 Apple Silicon 上运行,支持连续语音识别、自然语言响应、实时文本到语音合成,并支持多种不同的声音。Weebo 通过流式响应生成,提供更加自然的交流体验。
2. 项目快速启动
环境准备
首先,确保您的系统中已安装 Python 3.12。然后,按照以下步骤准备项目环境:
# 创建虚拟环境
python3 -m venv .venv
# 激活虚拟环境
source .venv/bin/activate
# 安装依赖
pip install -r requirements.txt
下载模型
在启动项目之前,需要下载所需的模型文件:
# 下载 kokoro TTS 模型
wget https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/kokoro-v0_19.onnx
# 使用 Ollama 拉取 llama3.2 模型
ollama pull llama3.2
对于 Mac 用户,还需要安装 espeak-ng 并设置环境变量:
brew install espeak-ng
export ESPEAK_DATA_PATH=/opt/homebrew/share/espeak-ng-data
运行聊天机器人
使用以下命令启动聊天机器人:
uv run --python 3.12 --with-requirements requirements.txt main.py
程序将开始监听语音输入。自然地说话并稍作停顿,机器人会以合成的语音回应。要停止程序,按下 Ctrl+C。
或者,您也可以创建一个环境并安装依赖:
python main.py
3. 应用案例和最佳实践
Weebo 可以用于多种场景,如智能客服、语音助手、交互式学习工具等。以下是一些最佳实践:
- 确保在安静的环境中使用 Weebo,以获得最佳的语音识别效果。
- 根据需要调整机器人使用的声音,以适应不同的应用场景。
- 利用 Weebo 的连续语音识别功能,可以创建更加流畅的对话体验。
4. 典型生态项目
Weebo 作为开源项目,可以与以下生态项目结合使用,以扩展其功能:
- Whisper:用于语音识别的强大模型,可以与 Weebo 结合提供更准确的语音转文字功能。
- Llama:用于生成自然语言响应的模型,可以增强 Weebo 的对话能力。
- Kokoro:实时文本到语音合成引擎,为 Weebo 提供高质量的语音输出。
通过整合这些项目,开发者可以构建出更加完善的语音交互系统。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考