Google Vizier 项目支持的优化算法详解
概述
Google Vizier 是一个强大的超参数优化和黑盒优化系统,它提供了多种优化算法来帮助用户高效地寻找最优解。本文将详细介绍 Vizier 支持的各类算法,包括它们的适用场景、功能特性以及支持程度。
算法分类与支持级别
Vizier 中的算法可以根据支持程度分为三大类:
- 官方算法:经过充分测试,可直接用于生产环境
- 外部导入算法:来自第三方库,需要额外安装
- 复现算法:基于论文实现的算法,性能可能有所差异
所有算法都支持不同类型的搜索空间:
- Flat:支持所有参数类型(连续、离散、分类等)
- Continuous-Only:仅支持连续参数
- Boolean-Only:仅支持布尔参数
部分算法还支持额外功能:
- +Batch:支持批量建议
- +MO:支持多目标优化
官方算法详解
1. GP-UCB-PE (高斯过程上置信边界与预测熵)
特性:Flat搜索空间,支持批量建议,支持多目标优化
GP-UCB-PE 结合了高斯过程的上置信边界(UCB)和预测熵(PE)策略,是一种高效的贝叶斯优化方法。它特别适合高维、复杂的优化问题,能够平衡探索与开发。
2. GP-Bandit (高斯过程优化器)
特性:Flat搜索空间,支持多目标优化
基于高斯过程的优化算法,适用于连续和离散参数的混合搜索空间。它通过构建代理模型来指导搜索方向,适合计算成本较高的目标函数。
3. Random Search (随机搜索)
特性:Flat搜索空间,支持批量建议,支持多目标优化
最简单的基线算法,在搜索空间中均匀随机采样。虽然简单,但在高维空间中往往表现优于网格搜索。
4. Quasi-Random Search (准随机搜索)
特性:Flat搜索空间,支持批量建议,支持多目标优化
使用低差异序列(如Sobol序列)进行采样,比纯随机搜索能更均匀地覆盖搜索空间,收敛速度通常更快。
5. Grid Search (网格搜索)
特性:Flat搜索空间,支持批量建议,支持多目标优化
传统的网格搜索方法,适用于低维问题。在搜索空间较小时可以穷举所有可能组合。
6. Shuffled Grid Search (随机化网格搜索)
特性:Flat搜索空间,支持批量建议,支持多目标优化
网格搜索的变体,打乱评估顺序以避免系统偏差。当需要提前终止时,这种方法能获得更均匀的探索。
7. Eagle Strategy (鹰策略)
特性:Flat搜索空间,支持批量建议
结合了全局随机搜索和局部优化的两阶段策略。第一阶段进行全局探索,第二阶段在最有希望的区域内进行精细搜索。
外部导入算法
CMA-ES (协方差矩阵自适应进化策略)
特性:仅支持连续参数,支持批量建议
一种先进的进化算法,特别适合连续优化问题。它通过自适应调整搜索分布来高效地探索参数空间。
注意:使用此算法需要额外安装相关依赖包。
复现算法详解
1. NSGA-II (非支配排序遗传算法II)
特性:Flat搜索空间,支持批量建议,支持多目标优化
经典的多目标进化算法,通过非支配排序和拥挤距离计算来保持种群的多样性,适用于需要权衡多个目标的优化问题。
2. BOCS (组合结构的贝叶斯优化)
特性:仅支持布尔参数
专门针对布尔变量组合优化问题的算法,使用稀疏贝叶斯建模来高效搜索组合空间。
3. Harmonica (谐波算法)
特性:仅支持布尔参数
基于傅里叶分析和压缩感知理论的布尔优化算法,适合高维布尔优化问题。
算法选择建议
- 新手入门:建议从随机搜索或准随机搜索开始,它们简单易用且不需要太多调参
- 连续优化:CMA-ES 或 GP-Bandit 是不错的选择
- 布尔优化:考虑 BOCS 或 Harmonica
- 多目标优化:NSGA-II 或 GP-UCB-PE 是首选
- 计算资源有限:随机化网格搜索或准随机搜索可能更合适
总结
Google Vizier 提供了丰富的优化算法选择,覆盖了从简单到复杂、从单目标到多目标的各种优化场景。理解每种算法的特点和适用条件,可以帮助用户根据具体问题选择最合适的优化策略,从而获得更好的优化效果。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考