多跳密集检索开源项目安装与配置指南
1. 项目基础介绍
本项目是Facebook Research团队开源的多跳密集检索(Multi-Hop Dense Retrieval, MDR)项目,旨在为复杂开放域问题回答提供一种简单且通用的密集检索方法。MDR通过递归检索支持回答问题的文本段落,已在HotpotQA数据集和FEVER数据集中的多跳子集上取得了出色的检索性能。项目主要使用Python编程语言实现。
2. 项目使用的关键技术和框架
- 编程语言: Python
- 深度学习框架: PyTorch
- 预训练模型: RoBERTa, ELECTRA
- 检索算法: 密集检索,结合多跳推理
- 数据集: HotpotQA, FEVER
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Python版本:3.6
- pip(Python包管理工具)
- CUDA(NVIDIA GPU驱动,如使用GPU)
- conda(推荐,用于环境管理)
详细安装步骤
步骤 1: 创建并激活Python环境
打开终端,执行以下命令创建一个名为MDR
的Python环境,并激活它:
conda create --name MDR python=3.6
conda activate MDR
步骤 2: 克隆项目仓库
在激活的环境中,克隆项目仓库到本地:
git clone git@github.com:facebookresearch/multihop_dense_retrieval.git
cd multihop_dense_retrieval
步骤 3: 设置项目环境
执行以下脚本设置项目所需的环境:
bash setup.sh
步骤 4: 下载数据文件和预训练模型
根据项目要求下载所需的数据文件和预训练模型:
bash ./scripts/download_hotpot.sh
注意:下载的数据和模型可能占用较大空间。
以上步骤完成后,您就可以开始使用该项目进行进一步的探索和学习了。如果您打算进行训练或评估,请参考项目README文件中的详细指导。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考