多跳密集检索开源项目安装与配置指南

多跳密集检索开源项目安装与配置指南

multihop_dense_retrieval Multi-hop dense retrieval for question answering multihop_dense_retrieval 项目地址: https://gitcode.com/gh_mirrors/mu/multihop_dense_retrieval

1. 项目基础介绍

本项目是Facebook Research团队开源的多跳密集检索(Multi-Hop Dense Retrieval, MDR)项目,旨在为复杂开放域问题回答提供一种简单且通用的密集检索方法。MDR通过递归检索支持回答问题的文本段落,已在HotpotQA数据集和FEVER数据集中的多跳子集上取得了出色的检索性能。项目主要使用Python编程语言实现。

2. 项目使用的关键技术和框架

  • 编程语言: Python
  • 深度学习框架: PyTorch
  • 预训练模型: RoBERTa, ELECTRA
  • 检索算法: 密集检索,结合多跳推理
  • 数据集: HotpotQA, FEVER

3. 项目安装和配置的准备工作

在开始安装之前,请确保您的系统满足以下要求:

  • Python版本:3.6
  • pip(Python包管理工具)
  • CUDA(NVIDIA GPU驱动,如使用GPU)
  • conda(推荐,用于环境管理)

详细安装步骤

步骤 1: 创建并激活Python环境

打开终端,执行以下命令创建一个名为MDR的Python环境,并激活它:

conda create --name MDR python=3.6
conda activate MDR
步骤 2: 克隆项目仓库

在激活的环境中,克隆项目仓库到本地:

git clone git@github.com:facebookresearch/multihop_dense_retrieval.git
cd multihop_dense_retrieval
步骤 3: 设置项目环境

执行以下脚本设置项目所需的环境:

bash setup.sh
步骤 4: 下载数据文件和预训练模型

根据项目要求下载所需的数据文件和预训练模型:

bash ./scripts/download_hotpot.sh

注意:下载的数据和模型可能占用较大空间。

以上步骤完成后,您就可以开始使用该项目进行进一步的探索和学习了。如果您打算进行训练或评估,请参考项目README文件中的详细指导。

multihop_dense_retrieval Multi-hop dense retrieval for question answering multihop_dense_retrieval 项目地址: https://gitcode.com/gh_mirrors/mu/multihop_dense_retrieval

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓禄嘉Ernestine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值