DXVK Native 技术文档

DXVK Native 技术文档

dxvk-native D3D9/11 but it runs natively on Linux! dxvk-native 项目地址: https://gitcode.com/gh_mirrors/dx/dxvk-native

DXVK Native 是一个将 DXVK 移植到 Linux 平台的项目,它使得游戏和应用程序能在原生环境下运行,无需借助 Wine。此文档旨在提供全面的指导,帮助开发者和用户了解并使用 DXVK Native。

安装指南

系统需求

  • 支持 C++17 的编译器(如 GCC, Clang 或 MSVC)
  • Meson 构建系统(版本至少为 0.46)
  • glslang 编译器

使用 Steam Runtime 构建 (可选)

对于希望在 Steam Runtime 环境下构建的用户:

  • 对于 32 位环境,执行以下命令:
    docker run -e USER=$USER -e USERID=$UID -it --rm -v $(pwd):/dxvk-native registry.gitlab.steamos.cloud/steamrt/scout/sdk/i386 /bin/bash
    
  • 对于 64 位环境,则使用:
    docker run -e USER=$USER -e USERID=$UID -it --rm -v $(pwd):/dxvk-native registry.gitlab.steamos.cloud/steamrt/scout/sdk /bin/bash
    

在主机上构建库

直接在 DXVK 目录下执行以下命令来构建:

  • 不使用 Steam Runtime:
    ./package-native.sh master /your/target/directory --no-package
    
  • 使用 Steam Runtime:
    ./package-native-steamrt.sh master /your/target/directory --no-package
    

项目的使用说明

DXVK Native 替换了特定的 Windows 依赖项,例如,Windows 的 HWND 变为了 SDL_Window*,从而使其能在多个平台工作。通常,只需集成到您的渲染器即可使用,但可能遇到一些初期兼容性问题,需要特别注意 __uuidof 的替换使用。

游戏与项目示例

  • Portal 2, Left 4 Dead 2 (由 Valve 提供支持的双平台游戏)
  • Ys VIII, Ys IX, Perimeter, Momentum Mod, Portal 2: Community Edition

API 使用文档

  • 配置文件: d3d9_config.h 允许调整 D3D9 的性能设置,比如禁用浮点模拟和验证。
  • 环境变量:
    • DXVK_HUD 控制着显示帧率和统计信息的头部显示器(HUD),允许自定义显示的内容。
    • DXVK_FRAME_RATE 用来限制帧率。
    • DXVK_FILTER_DEVICE_NAME 强制使用指定的 GPU 设备。
    • 更多环境变量可用于状态缓存控制、调试和日志记录等。

API 示例及注意事项

虽然本文档没有详细列出所有API接口细节,但在实际应用中,开发者主要关注的是正确集成 DXVK Native 到其项目中的步骤,以及利用上述提到的环境变量进行调试和配置。

结语

DXVK Native 通过简化跨平台开发流程,特别是对那些原本设计为Windows运行的游戏和应用来说,极大地提高了移植到Linux的可能性。遵循以上指引,您应能够顺利地安装、配置并使用 DXVK Native,在提高游戏体验的同时减少开发复杂度。如果遇到具体的技术难题,查阅项目源代码和最新的文档更新总是好的解决方案。

dxvk-native D3D9/11 but it runs natively on Linux! dxvk-native 项目地址: https://gitcode.com/gh_mirrors/dx/dxvk-native

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/ab08c24cda4d 本项目基于 PyTorch 实现了 CSRNet(卷积稀疏表示网络)人群计数模型。CSRNet 是一种高效且精准的人群密度估计方法,尤其适合高密度场景下的人群计数。该模型借助卷积神经网络(CNN)的特性,利用稀疏表示来应对复杂背景和密集人群的挑战。以下将详细介绍 CSRNet 的核心概念、结构及实现过程,并阐述人群计数的重要性。 人群计数在公共场所安全监控、交通管理和大型活动组织等领域极为关键。准确估计人群数量有助于保障安全和优化管理。传统计数方法如人工计数或基于规则的方法效率低且易出错而,深度学习技术的引入,尤其是 CSRNet 这类模型,显著提高了计数的准确性和效率。 CSRNet 的核心在于其深度卷积网络结构和稀疏表示能力。该模型通过多尺度特征提取,适应不同大小的人头。其架构包含多个卷积层,每层后接 Leaky ReLU 激活函数,增强非线性表达能力。此外,CSRNet 引入了空洞卷积(也称 atrous convolution),可在不增加参数数量的情况下扩大感受野,更高效地捕捉大范围信息。具体架构包括:输入层接收预处理后的图像;基础网络通常使用预训练的 VGG16 提取多层次特征;多尺度特征融合通过不同扩张率的空洞卷积获得不同分辨率的特征图;解码器利用反卷积操作将低分辨率特征图恢复至原始尺寸,结合多尺度信息重建上下文;稀疏表示层是 CSRNet 的独特之处,通过稀疏编码和解码,将高维特征转换为低维稀疏表示,降低背景噪声影响,提升人头检测精度;输出层通过 1×1 卷积将特征图转化为人群密度图,再经全局平均池化和全连接层得到最终计数结果。 在实现过程中,需注意以下几点:数据预处理,如缩放、归一化、增强等,以提升模型泛化能力;训练策略,包括数据集划分、学习率调度、损失函数选择(如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云迁峰Floyd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值