OTA: 最优传输分配用于目标检测

OTA: 最优传输分配用于目标检测

OTA Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch. OTA 项目地址: https://gitcode.com/gh_mirrors/ot/OTA

项目基础介绍和主要编程语言

OTA(Optimal Transport Assignment)是一个基于PyTorch的开源项目,由Megvii-BaseDetection团队开发。该项目的主要编程语言是Python。OTA项目旨在提供一种新的目标检测方法,通过最优传输分配(Optimal Transport Assignment)来优化目标检测任务中的标签分配问题。

项目核心功能

OTA项目的核心功能是实现了一种新的标签分配策略,称为最优传输分配(OTA)。这种策略通过优化传输成本来动态分配标签,从而提高目标检测的准确性和效率。OTA方法在CVPR 2021论文中被提出,并在多个目标检测基准数据集上取得了显著的性能提升。

项目最近更新的功能

OTA项目最近更新的功能包括:

  1. 多节点训练支持:增加了对多节点分布式训练的支持,可以通过配置文件轻松设置多节点训练环境。
  2. 测试时间增强(TTA):引入了测试时间增强功能,通过在测试阶段应用多种尺度和增强策略,进一步提高检测性能。
  3. 模型权重下载:提供了多个预训练模型的权重下载链接,方便用户快速开始实验和评估。
  4. 文档和示例更新:更新了项目的文档和示例代码,提供了更详细的安装和使用指南,帮助新用户快速上手。

通过这些更新,OTA项目不仅在性能上有所提升,还增强了用户的使用体验和开发便利性。

OTA Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch. OTA 项目地址: https://gitcode.com/gh_mirrors/ot/OTA

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韩悦思

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值