KG_RAG 项目推荐
KG_RAG 项目地址: https://gitcode.com/gh_mirrors/kg/KG_RAG
1. 项目基础介绍和主要编程语言
KG_RAG(Knowledge Graph-based Retrieval Augmented Generation)是一个开源项目,旨在通过知识图谱(KG)增强大型语言模型(LLM)的能力,以处理知识密集型任务。该项目主要使用Python编程语言开发,适合对生物医学领域感兴趣的开发者和研究人员使用。
2. 项目核心功能
KG_RAG的核心功能是将知识图谱中的显式知识与大型语言模型的隐式知识相结合,从而提升模型在特定领域(如生物医学)的语义理解和生成能力。具体功能包括:
- 知识图谱增强生成:通过从知识图谱中提取“提示感知上下文”,优化LLM的响应。
- 任务无关框架:适用于多种任务,不仅仅是生物医学领域。
- 支持多种模型:支持GPT和Llama等大型语言模型。
- 交互式模式:提供交互式模式,方便用户逐步了解和使用KG_RAG。
3. 项目最近更新的功能
KG_RAG最近更新的功能包括:
- 增强的命令行参数:提供更灵活的命令行参数,方便用户根据需求定制运行方式。
- 支持GPT和Llama模型:增加了对GPT和Llama模型的支持,用户可以根据需求选择合适的模型。
- 交互式模式:新增交互式模式,用户可以逐步了解和操作KG_RAG的各个步骤。
- 优化配置文件:更新了配置文件(
config.yaml
),用户可以更方便地配置和运行项目。
通过这些更新,KG_RAG在易用性和功能性上都有了显著提升,为用户提供了更强大的工具来处理知识密集型任务。
KG_RAG 项目地址: https://gitcode.com/gh_mirrors/kg/KG_RAG
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考