SpringCloud --- Eureka

Eureka是Netflix的服务发现组件,支持故障转移与客户端缓存,适用于大规模分布式系统。本文介绍其工作原理,包括服务注册、续约、同步等功能,并对比Eureka与Zookeeper的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Eureka是什么


Eureka是Netflix组件的一个子模块,也是核心模块之一。云端服务发现,一个基于 REST 的服务,用于定位服务,以实现云端中间层服务发现和故障转移

Eureka服务端(以下简称服务端)与Eureka客户端(以下简称客户端)之间协同工作的流程:

二、Eureka优缺点


优点:

(1)故障转移:

在Eureka平台中,如果某台服务器宕机,Eureka不会像zookeeper选择leader的过程,客户端请求会自动切换到新的Eureka节点,当宕机的服务器重新恢复后,Eureka会再次将其纳入到服务器集群管理中,而对于它而言,所有要做的无非是同步一些新的服务注册信息。所以不用担心“掉队”的服务器恢复以后,会从Eureka服务器集群中踢除的风险。

(2)客户端缓存功能:

Eureka还有客户端缓存功能(Eureka分为客户端程序与服务端程序两个部分,客户端程序负责向外提供注册与发现服务接口)所以即便Eureka集群中所有节点都失效,或者发生网络分割故障导致客户端不能访问任何一台Eureka服务器;

Eureka服务的消费者仍然可以通过Eureka客户端缓存来获取现有的服务注册信息。甚至最极端的环境下,所有正常的Eureka节点都不对请求产生相应,也没有更好的服务器解决方案来解决这种问题时;得益于Eureka的客户端缓存技术,消费者服务仍然可以通过Eureka客户端查询与获取注册服务信息,这点很重要。

 

缺点:

(1)配置地址麻烦:实际生产中,不会将服务注册中心与业务服务部署在同一台机器上。实际部署中,当 eureka server 的地址发生变化时,还得修改配置文件里 eureka server的地址,太麻烦了。

(2)服务发现慢: eureka因为缓存设计的原因,使得服务注册上去之后,最迟需要两分钟后才能发现。

(3)安全性问题:实际使用中,服务注册发现中心的安全性也是需要考虑的,应该对服务注册和发现的请求进行鉴权,来确保服务的安全性,安全也是急需解决的问题。

  • Eureka从理论上讲作为系统服务的注册中心是最适合的。

备注:

也有不少人认为,在现实生产环境中他(她)遇到的很多项目都采用的是 Zookeeper + Dubbo 实现的服务注册与发现,那是因为你们的集群(业务流量需求)还不够庞大,流量小,一般环境运行都比较稳定的,基本上不会遇到注册中心的实例(节点)半数以上都挂了的情况,问题也不会那么的明显罢了,或根本就遇不到。

三、Eureka原理


注册表这块是采用三级缓存register-Map ==> readWriterMap ==> readOnlyMap,提高并发能力的同时,防止出现并发加锁解锁的开销以及安全问题;

四、Eureka主要功能:


(1)服务注册:

Eureka Client会通过发送HTTP REST请求的方式向Eureka Server将自己注册为服务,提供自身的元数据,比如 IP 地址、端口、运行状况指标的URL、主页地址等信息。Eureka Server接收到注册请求后,就会把这些元数据信息存储在一个ConcurrentHashMap中。

(2)服务续约:

在服务注册后,Eureka Client会维护一个心跳来持续通知Eureka Server,说明服务一直处于可用状态,防止被剔除。Eureka Client在默认的情况下会每隔30秒发送一次心跳来进行服务续约。

(3)服务同步:

Eureka Server之间会互相进行注册,构建Eureka Server集群,不同Eureka Server之间会进行服务同步,用来保证服务信息的一致性。

(4)获取服务:

服务消费者(Eureka Client)在启动的时候,会发送一个Http REST请求给Eureka Server,获取上面所有注册的服务清单,并且缓存在Eureka Client本地,默认缓存30秒。同时,为了性能考虑,Eureka Server也会维护一份只读的服务清单缓存,该缓存每隔30秒更新一次。[由eureka server进行更新]

(5)服务调用:

服务消费者(Eureka Client)在获取到服务清单后,就可以根据清单中的服务列表信息,查找到其他服务的地址,从而进行远程调用。Eureka有Region和Zone的概念,一个Region可以包含多个Zone,在进行服务调用时,优先访问处于同一个Zone中的服务提供者。

(6)服务下线:

当Eureka Client需要关闭或重启时,就不希望在这个时间段内再有请求进来,所以,就需要提前先发送REST请求给Eureka Server,告诉Eureka Server自己要下线了,Eureka Server在收到请求后,就会把该服务状态置为下线(DOWN),并把该下线事件传播出去。

(7)服务剔除:

有时候,服务实例可能会因为网络故障等原因导致不能提供服务,而此时该实例也没有发送请求给Eureka Server来进行服务下线,所以,还需要有服务剔除的机制。Eureka Server在启动的时候会创建一个定时任务,每隔一段时间(默认60秒),从当前服务清单中把超时没有续约(默认90秒)的服务剔除。

(8)自我保护:

既然Eureka Server会定时剔除超时没有续约的服务,那就有可能出现一种场景,网络一段时间内发生了异常,所有的服务都没能够进行续约,Eureka Server就把所有的服务都剔除了,这样显然不太合理。所以,就有了自我保护机制,当短时间内,统计续约失败的比例,如果达到一定阈值,则会触发自我保护的机制,在该机制下,Eureka Server不会剔除任何的微服务,等到正常后,再退出自我保护机制。

备注:

1.Eureka与Zookeeper比较

(1)Zookeeper是CP,分布式协同服务,突出一致性。对ZooKeeper的的每次请求都能得到一致的数据结果,但是无法保证每次访问服务可用性。如请求到来时,zookeer正在做leader选举,此时不能提供服务,即不满足A可用性。

即任何时刻对zookeeper的访问请求能得到一致的数据结果,同时系统对网络分区具有容错性;但是它不保证每次服务请求都是可用的。极端环境下,zookeeper会丢弃一些请求,消费者端需要重新请求才能得到结果。

作为zookeeper的核心算法Zab(zookeeper  Atomic Broadcast,全称:原子消息广播协议),就是解决了分布式系统下数据如何在多个服务之间保持同步问题的。

 

(2)Euerka是AP,高可用与可伸缩的Service发现服务,突出可用性。相对于Zookeeper而言,可能返回数据没有一致性,但是保证能够返回数据,服务是可用的。

2.CAP定理:

概念:⼀个分布式系统最多只能同时满⾜⼀致性(Consistency)、可⽤性(Availability)和分区容错性(Partition tolerance)这
三项中的两项。

  • C:Consistency ,一致性。更新操作成功并返回客户端完成后,所有节点在同⼀时间的数据完全⼀致,所以,⼀致性,说的就是数据⼀致性。
  • A: Availability,可用性。服务⼀直可⽤,⽽且是正常响应时间。
  • P:Partition tolerance,分区容错性。类似多机房部署,保证服务稳定性。分布式系统在遇到某节点或⽹络分区故障的时候,仍然能够对外提供满⾜⼀致性和可⽤性的服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sun cat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值