- 为什么傅里叶变换是对单通道图像进行处理?
傅里叶变换与时间或空间信号的强度一起工作,并转换为频率信号的强度。没有一个数字可以表示颜色的强度而不转换为灰度。
您可以将图像分成3个不同的图像,分别针对红色,绿色和蓝色分量。这些中的每一个都可以独立进行傅里叶变换处理。
当您应用傅立叶变换(FT)(或某些相关变换,例如DCT)时,您正在查看图像中的空间频率。
直观地说,这意味着FT重新组织您的图像中的空间信息,以矩阵的形式对应于2D正弦曲线的系数,如果总结,您将获得原始图像。
正如Mark Ransom指出的那样,您可以将DFT分别应用于每个颜色通道。实际上,这基本上是使用非常类似的变换(离散余弦变换 - 离散余弦变换 - DCT)的JPEG加速过程的方法。
参考博客:
http://cn.voidcc.com/question/p-mkskteen-oo.html
- 很多人都不了解图像(二维)频谱中的每一点究竟代表了什么,有什么意义?
二维频谱中的每一个点都是一个与之一一对应的二维正弦/余弦波。
1.频谱需要对调平fftshift.中间是低频率区域,旁边是高频区域。
2.中间是低频区域,四周是高频。
3.中间低频部分占据大部能量。
4. 平行于栅格变化的方向
![**
5.平移对频谱图没有影响。
6.旋转会导致频谱图一起旋转。
相位是频谱中各正弦分量关于原点的位移的度量。
注意观察下图中,粉红色所在的直线就是原点直线。
参考博客:
本文转载于松下J27,原文分为三章讲解,在此合并转载
文一:https://blog.csdn.net/daduzimama/article/details/80109139
文二:https://blog.csdn.net/daduzimama/article/details/80394570
文三:https://blog.csdn.net/daduzimama/article/details/80394596
百度文库一篇值得推荐的文章。
https://wenku.baidu.com/view/eedbad024a35eefdc8d376eeaeaad1f346931160.html