现在以大模型为代表的新一代人工智能技术迅猛发展,展现出广阔应用前景。
在 AI 即未来的大路上,众多国企和上市公司纷纷接入 AI 大模型,然而对于刚开始和 AI 打交道的公司来说,通常都会遇到五个坑:
为AI 找新场景适配,而不是立足核心业务进行痛点优化。
对大模型的算力依赖、参数依赖,以为大模型越大、参数越多,就能越好的解决问题。
数据分散在公司各个角落,并且是各种格式,不好清洗与训练。
大力出奇迹,只想着堆算力,没有对业务痛点的深刻理解。
利用 AI做了一堆场景适配,不搞持续优化。
根据这些痛点,华为云特地打造了MaaS大模型服务平台,通过“三层五阶十二步”的方法论为企业提供清晰、可靠的大模型落地方案。
“三层五阶十二步”的方法论将大模型服务分为三层:重定义智能业务、模型开发与交付和持续优化 AI应用。细分为五阶段:场景识别、模型选型、模型调优、数据治理、持续运营,这五个阶段内部还有十二个步骤。
可以说,MaaS平台打通了从底层算力到上层应用的全链路。
具体包括:
AI基础设施:整合了鲲鹏、昇腾、X86等算力,并配套了Flexus系列云服务,包括存储、数据库和云搜索,为上层所有 AI 开发和应用,提供稳定高效的云服务底座和强劲的大模型推理性能。
模型广场:兼容多种开源大模型,给予客户充分的选择权,还提供从模型部署到模型微调的全链路工具,提升搭建 AI应用、接入 AI应用的效率。
MCP广场:企业的IT团队既可以调用美团、通达信等精品MCP,也可以选择上千种流行的MCP,快速构建出智能客服、智能问答、交互数字人等多种智能应用,并与现有业务系统打通集成,极大的提升了应用创建的易用性。
今天就带大家体验一下MaaS平台所带来的 AI 云基建能为我们的 AI 应用带来多么高效的提升。
1. 预置30+主流开源大模型
一打开华为云的 MaaS 大模型服务平台,就能看到模型广场,模型广场内提供了市面上主流的开源大模型:

在模型广场内你可以通过分类找到你想要的模型,但是上面的分类并不是全部,你还可以在 MaaS 平台的模型库中去选择更多模型进行部署,比如 Meta 的Llama 系列和国内的百川大模型系列:

针对DeepSeek,MaaS 平台也做了单独的适配。
今年五月底,DeepSeek 发布了 DeepSeek R1-0528 版本,该模型在在数学推理、代码生成、逻辑推理等多个核心基准测试中,展现出开源模型当前最先进(SOTA)的性能水平。华为云MaaS快速跟进,针对该模型进行深度适配与优化,并推出了 DeepSeek R1-0528 的685B满血版本。
对于同一个大模型而言,部署满血版和裁切板,所得到的性能是截然不同的,它就类似 CPU 领域的锁频和超频,只有满血版的大模型才能发挥出这个模型的上限能力。
得益于华为云昇腾AI云服务的全栈优化与庞大的底层算力,DeepSeek满血版在华为云平台上实现了高推理效率和资源利用率,不仅能够让企业享受最高性能,还能助力企业大幅降低推理成本。
以上这些模型,除了主流版本之外,MaaS 平台还提供了蒸馏版本和裁切版本(比如上面截图中的 DeepSeek-R1-32K),这样更能满足大中小企业的多样化需求。
比如在互联网推荐场景,企业可以选择具有顶级推理能力的满血版模型,而在办公领域,可以选择中等参数的模型,一切都根据企业的需求来定夺。
一般模型参数越小,价格也往往越便宜,所以对于企业来说,选择适合自己需求的模型能够节省更多的成本。
而为企业提供更多选择,兼顾性能与成本,是华为云一直努力的方向。
所以,对于需要接入 AI 的企业来说,可以先在 MaaS 平台快速接入一个中等参数的大模型,以较低的成本验证业务,随着业务验证完成,再将模型切换为满血版本的大模型,这一切都可以在 MaaS 平台鼠标点几下完成。
2. MCP 让大模型扩充更多能力
最近 MCP 在 AI 领域比较火。
可能有一些同学可能听到MCP 比较陌生,它其实是大模型和其他应用之间的桥梁,比如你问大模型明天什么天气,那么大模型就需要知道你在哪(通过你的地理位置获取你的城市),通过你的城市去查询天气信息(调用MCP广场中的气象服务)。
所以使用 MCP 能为你的大模型应用添加非常多的多样能力,比如联网、查车票、查天气、甚至给照片修图+美颜。
而华为云的Maas 平台早早就在布局 MCP,目前在Maas 平台的 MCP 广场已经有 1400+ MCP应用:

可以看到 MaaS平台中的 MCP广场汇聚了多种功能、多种行业的 MCP 服务,其中不乏天眼通、高德地图、美图影像这种国民级应用的入驻。
而通过 MCP 广场中提供的这些能力,我们可以轻松让自己的大模型接入这些能力。
比如你可以使用美图公司的 MCP 做一个照片美化器的应用,只需要在Maas 平台创建模型时添加美图影像这个 MCP 即可:

如上图所示,我们先选择一个 DeepSeek模型,再添加美图影像这个 MCP,接着输入一些提示词后,点击创建应用,你就可以得到一个满血 DeepSeek + MCP 的在线大模型服务了。
接着你就可以在任何平台,以 HTTP API 的方式接入此模型服务,由于此服务具备了美图影像的能力,你可以在一些场景下提示用户上传照片,利用大模型的能力对照片进行美颜,然后再返回给用户展示。
再比如你希望在你的 AI 应用场景中,加入搜索功能,那你可以在创建模型时添加联网增强这个 MCP,这样你的模型就具备了联网功能,可能快速根据最新的信息做出决策。
如果你要做 toB 的大模型应用,那天眼通这个 MCP 也大概率要接入了,它可以为你查询企业的相关情况,对于一些智能问答企业情况的场景比较好用。
还有许许多多,各种能力的 MCP,你都可以在 MaaS 平台的 MCP 广场去寻找并使用。
3. 软硬件协同打造低延迟与高性能
前文中介绍了一些 MaaS 平台中模型和生态,但是对于接入大模型的企业来说,除了生态,大模型的性能表现更是用户更能切身感知到的用户体验。
大模型的性能其实表现在两方面,一是高吞吐量:可以承载更多的用户,二是低延时:可以让用户以极快的速度得到回复。
比如大模型普遍应用的行程旅游规划场景,接入方大部分都是互联网旅游平台,他们拥有着海量用户,所以对于模型的吞吐量要求极高,不能让客户感觉到卡顿,同时也会对回复速度有要求,速度越快,转化率可能就越高。
这种要求对 MaaS 这种云端大模型平台带来了:算力、吞吐量、延时的三重要求。
所以华为云 MaaS 平台为了解决这三个问题,通过系统级协同创新,以架构实现提升,并通过:超节点、推理框架和模型网关进行三重优化。
首先是A3 超节点以 384个计算卡形成高速互联,突破传统集群带宽/显存瓶颈,使跨机通信时延降低,为超大模型混合并行提供硬件级竞争力。CloudMatrix384超节点首创将384颗昇腾NPU和192颗鲲鹏CPU通过全新高速网络MatrixLink全对等互联,形成一台超级“AI服务器”,单卡推理吞吐量跃升到2300 Tokens/s。
同时支持混合专家MoE大模型的推理,以“1卡1专家”架构提升推理效率,支撑 DeepSeek 等千亿参数模型推理性能 3 倍跃升。
其次是大EP推理框架,这是华为云专为昇腾优化的推理框架,通过大规模“专家并行”(EP)技术,把模型推理任务分配到众多计算卡上,以此实现每张卡加载小块推理人物,在关键的解码阶段响应更快,实现了整体上的超低延迟,资源利用率提升20%,性能提升10%+ 。
由于推理任务被分散开来,单计算卡能够预留更多显存容量,预留容量用于KV缓存,既能支持更大用户并发所需的KV缓存,支持更长的上下文序列,又能实现系统的更大吞吐性能,同时通过大规模专家并行+PD分离+投机推理,实现了3倍单卡吞吐性能。
最后则是模型网关为客户提供支持跨地域就近接入,减少网络传输距离,降低用户侧延迟,让客户能够第一时间享受到即开即用的AI算力资源。
华为云还通过 Prompt 长度感知,将长文本请求定向调度至高显存实例,短文本分配至低延迟实例,动态合并空闲算力形成“公共资源池”,提升集群利用率。
有了以上这些开创式的更新,MaaS 平台完全能够同时满足海量算力、高吞吐量和低延时的要求,比如一些头部企业的高并发业务需求。
4. 以模护模为应用打造安全航母
除了性能要求之外,AI大模型安全更是平台的重中之重,其安全性已远超传统网络安全的范畴,成为决定业务成败的基石。
真正的安全,不仅在于抵御外部攻击,更在于构建一个从底层硬件到上层应用都稳定、透明、可控的“信任环境”。
若无此保障,再强大的算力也可能因硬件故障而中断,再智能的模型也无法提供持续可靠的服务。
华为云提供包含语料数据安全、模型安全、推理安全、应用安全在内的全生命周期模型安全方案,真正做到了坚如磐石的云安全。
华为云重磅发布大模型防火墙,通过提示词攻击防范和敏感内容实时检测,保障大模型推理安全。一方面识别越狱、角色扮演、恶意指令等主流提示词攻击手段;另一方面预置了百万级规则库,针对提示词攻击的检出率大于 95%,整体能够帮助模型综合安全评测得分提升 20% 以上。
此外,MaaS 还通过 “以模护模”的功能进行二次安全验证,凡是在MaaS中涉及安全能力判断的场景,都会由信通院认证评估安全可信满级评分(业界最高分)的ModelArts Guard大模型安全护栏进行内容审核,非法敏感内容拦截率达90%+。
以上种种,令华为云的安全与运维服务成为了 MaaS 平台为企业做好安全运维保障的重要基石。
总结
华为云MaaS 平台从算力到应用,提供了端到端的整体产品能力,并且通过按需使用的弹性算力,有效帮助企业控制算力成本,是开发者部署大模型的优先选择。
大家可以通过华为云 MaaS 平台官网进行详细了解~