- 博客(9)
- 资源 (2)
- 收藏
- 关注
原创 CentOS7.9上配置双网卡绑定
需要注意的 是,并不是所有的传输策略都是802.3ad适应的,尤其考虑到在802.3ad标准43.2.4章节提及的包乱序问题。但是我们知道如果一个连接或者会话的数据包从不同的接口发出的话,中途再经过不同的链路,在客户端很有可能会出现数据包无序到达的问题,而无序到达的数据包需要重新要求被发送,这样网络的吞吐量就会下降。底层驱动支持设置某个设备的硬件地址,从而使得总是有个slave(curr_active_slave)使用bond的硬件地址,同时保证每个bond 中的slave都有一个唯一的硬件地址。
2025-02-22 14:31:20
1268
原创 网络抓包的大白话
中间串联的集线器,也可以换成有流量镜像的交换机,它可以将TV连接的网口的出入流量,都镜像(复制)到另外一个网口,笔记本接这个网口就可以抓到TV的进出网络报文了,原理是一样的。上图中,左边是正常的网络连接,右边是抓包时候的网络连接,中间串联了一个集线器,集线器会将TV的出入流量广播到其他端口,这样笔记本就可以抓到TV的进出网络报文了。路由器是连接不同网络的设备,通信方式是识别IP地址的,一个IP设备跨越大洋要跟彼岸的另外一个IP设备通话,要"选路",路径上有很多的路由器在帮助传递。
2024-04-23 18:04:53
1047
原创 YOLOv8进阶篇--训练模型,然后检测视频
当然也有其他的标注工具,例如:makesense。还可以在网上下载已经标注好的数据集,例如:rowboflow。标注好之后的图片和数据,需要放到yolov8的指定目录--datasets目录,这在yolov8是必须的,训练集的配置文件的根目录默认是它。训练的结果保存在runs/detect/train目录下,也可能是runs/detect/train2目录,注意结果提示即可发现。注1:训练过程中,可能要重新设定安装目录所在的磁盘分区(C盘或者D盘)的虚拟内存大小,建议改为50G~100G。
2024-04-03 16:42:08
894
1
原创 YOLOv8入门篇--YOLOv8的安装和使用
开发,从并不常用的 Lua 语言转为 Python 语言开发的深度学习框架,Torch 是 TensorFlow 开源前非常出名的一个深度学习框架,而 PyTorch 在开源后由于其使用简单,动态计算图的特性得到非常多的关注,并且成为了 TensorFlow 的 最大竞争对手。例如:我本来是在python3.11环境下写代码的,可YOLOv8代码是在python3.8环境下开发的,我要使用YOLOv8,那就要切换到python3.8环境下。解决的是用更加廉价的设备资源,实现更高效的并行计算。
2024-04-03 16:40:56
1314
1
原创 AI审核视频--我们选择YOLOv8
目前常用的目标检测算法有R-CNN(速度慢,过程繁琐,训练所需空间大)、Faster R-CNN(比前者更准确、快速、简便,但还是不够快,不够简洁)和基于YOLO的目标检测的算法(速度快,泛化能力强,但精度低,小目标和邻近目标检测效果差,比Fast R-CNN定位误差大一些)计算机视觉要解决的主要问题是:给出一张图片,计算机视觉系统必须识别出图像中的对象及其特征,如形状、纹理、颜色、大小、空间排列等,从而尽可能完整地描述该图像。当然,还有其他任务,例如:目标识别,目标追踪,语义分割等。
2024-04-03 16:38:45
1168
2
原创 音频转文本--我们选择faster-whisper
这里建议只下载faster-whisper-large-v2模型,也就是大模型的第二版,因为faster-whisper本来就比whisper快,所以使用large模型优势就会更加的明显。faster-whisper项目内部已经整合了VAD算法,VAD是一种音频活动检测的算法,它可以准确的把音频中的每一句话分离开来,并且让whisper更精准的定位语音开始和结束的位置。使用faster-whisper,最好选择python3.10版本,那好吧。回到项目根目录faster-whisper-webui下,
2024-04-02 18:29:23
1955
2
原创 linux本端对端都需要安装scp
今天碰到一问题:# scp from to提示:bash: scp: command not found本机装了scp了啊,对端也要安装scp么?果然。如何安装scp?# yum install openssh-clients
2013-08-16 13:32:51
1022
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人