Python pandas.groupby一些用法

本文介绍Pandas中.groupby()函数的基本用法,包括按单个或多个字段分组、结合mean()求均值及size()计数等操作。通过实际案例演示如何高效管理和分析数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

.groupby常用用法和解释

        可以根据按单个指定的字段名进行分组

import pandas as pd 

df = pd.read_csv("文件路径")
df["列名1"].groupby(df["列名2"])

        “列名1”的数据,根据”列名2”的来分组展示 

        可以根据多个字段来分组

import pandas as pd 

df = pd.read_csv("文件路径")
df["列名1"].groupby([df["列名2"],df["列名3"]])

       根据多个字段分组时,需要把字段用列表括起来 

        搭配mean或者size使用

        mean()是求均值

import pandas as pd 

df = pd.read_csv("文件路径")
group = df["列名1"].groupby([df["列名2"],df["列名3"]])
group.mean()

        将分组后的“列名1”的数据进行均值计算,按分组得出“列名1”平均值

        要注意mean()结果只能显示数值的字段结果

        size()是求分组的大小

import pandas as pd 

df = pd.read_csv("文件路径")
group = df["列名1"].groupby([df["列名2"],df["列名3"]])
group.size()

         对分组后的“列名1”的数据进行统计,继续符合该分组的结果有多少个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值