leetcode 第一遍(动态规划I)

这篇博客探讨了LeetCode中的动态规划问题,包括62. 不同路径,343. 整数拆分和279. 完全平方数。对于62题,作者指出解题思路类似于爬楼梯,通过dp[m][n] = dp[m-1][n] + dp[m][n-1]计算路径总数。在343题中,讨论了两种动态规划方法,一种是寻找乘积最大值,另一种涉及数学优化。而在279题中,提出了两种不同的动态规划解决方案。此外,博客还提到了1000. 最长上升子序列的问题,以及动态规划在解决这些问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

62. 不同路径

额,与爬楼梯类似,路径总数目 dp[m][n] = dp[m-1][n]+dp[m][n-1]。得考虑边界问题,当为1,2,3的时候

static int result[101][101] = {0};
class Solution {
public:
    int uniquePaths(int m, int n) {
        
        if(m<=0||n<=0) return 0;
        else if (m==1||n==1) return 1;
        else if (m==2&&n==2) return 2;
        else if ((m==3&&n==2)||(m==2&&n==3)) return 3;
        
        if (result[m][n]>0) return result[m][n];
        result[m][n-1] = uniquePaths(m,n-1);
        result[m-1][n] = uniquePaths(m-1,n);
        result[m][n] = result[m-1][n] + result[m][n-1];
        return result[m][n];
    }
};

343. 整数拆分

1,动态规划求解,dp[i]代表i分割后得到的乘积最大的元素,比较类似最长上升子序列,每次需要和之间所有的状态进行比较。

转移方程为:dp[i] = max(dp[i],(i-j)*max(dp[j],j))(i>j), 因为dp[j]没有包括当前分割当前元素乘机最大的情况。

2,还有数学优化证明,第二遍再说吧

class Solution {
public:
    int integerBreak(int n) {
        
        vector<int> dp(n+1,0);
        dp[1] = 1;
        for(int i=2;i<=n;i++){
            for(int j=0;j<i;j++){
                dp[i] = max(dp[i],(i-j)*max(dp[j],j));
            }
        }
        return dp[n];
    }
};

279. 完全平方数

1,动态规划求解,一个元素对应多个对应的子状态组成,类似于之前比较的状态转移方程,这儿转换为了多次比较,动态转移方程如下:dp[i+j*j] = min(dp[i+j*j],dp[i]+1)(这道题不是特别懂)

class Solution {
public:
    int numSquares(int n) {
        
        vector<int>dp(n+1,INT_MAX);
        dp[0] = 0;
        for(int i=0;i<=n;i++){
            for(int j=1;i+j*j<=n;j++){
                dp[i+j*j] = min(dp[i+j*j],dp[i]+1);
            }
        }
        return dp[n];
    }
};

2,还有一种动态规划,我觉得挺好的,定义一个函数f(n),表示我们要求的解,f(n)的求解为f(n) = 1+min(f(n-1^2)+...+f(n-k^2),k^2<=n)

class Solution {
public:
    int numSquares(int n) {
        vector<int> f(n+1,0);
        for(int i = 1;i<=n;i++){
            int minVal = INT_MAX;
            for(int j = 1; j*j<=i;j++){
                minVal = min(minVal,f[i-j*j]);
            }
            f[i] = minVal+1;
        }
        return f[n];
    }
};

300. 最长上升子序列

1,O(nlog2n),把这个看作维护一个最长子序列的数组的任务,如果满足递增的时候就压入,且长度

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size()==0)
        {
            return 0;
        }
        int len=0;
        int dp[nums.size()];
        dp[0]=nums[0];
        for(int i=1;i<nums.size();i++)
        {
            if(nums[i]>dp[len])
            {
                dp[++len]=nums[i];
            }
            else
            {
                int j=lower_bound(dp,dp+len,nums[i])-dp;
                dp[j]=nums[i];
            }
        }
        return len+1;
    }
};

2,动态规划,设f(i)为第i位最长递增子序列长度 f[i] = max(f[i],f[j]+1);

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int len = nums.size();
        int result = -INT_MAX;
        if (len ==0) return 0;
        vector<int> dp(len,1);
        dp[0] = 1;
        for(int i=0;i<=len-1;i++){
            for(int j=0;j<i;j++){
                if(nums[j]<nums[i])
                dp[i] = max(dp[i],dp[j]+1);
            }
            result = max(result,dp[i]);
        }
        return result;
    }
};

不跑步就刷题

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值