DependencyMatcher + ML 混合策略 Pipeline 设计模式

目录

13️⃣ DependencyMatcher + ML 混合策略 Pipeline 设计模式

1️⃣ 引言

2️⃣ 典型架构图

3️⃣ 设计原则

3.1 规则优先匹配

3.2 Fallback 策略

3.3 策略切换阈值设计

4️⃣ 代码示例框架

4.1 Pipeline 主控逻辑

4.2 Matcher Engine 统一接口示例

5️⃣ 常见业务落地策略

5.1 法律 / 合同 QA

5.2 医疗问答

5.3 电商客服 QA

6️⃣ 日志与监控建议

7️⃣ 优化建议

8️⃣ 小结

9️⃣ 下一步进阶?


13️⃣ DependencyMatcher + ML 混合策略 Pipeline 设计模式


1️⃣ 引言

在企业级 QA / RAG / 信息抽取产品里:

  • 单靠规则 → 覆盖率低,应对复杂语言困难

  • 单靠大模型 → 幻觉问题严重,不可控,不可解释

👉 最佳实践:构建 规则优先 + ML fallback 混合 Pipeline
➡️ 兼顾:

✅ 业务关键场景高准确率
✅ 复杂/未覆盖场景 fallback → ML 补全
✅ 全链路可监控、可解释


2️⃣ 典型架构图

           ┌────────────────────────────┐
           │      用户输入 Query         │
           └────────────┬──────────────┘
                        ▼
            ┌─────────────────────┐
            │ DependencyMatcher    │
            │   高置信度规则匹配   │
            └────────┬────────────┘
          匹配成功?   │ 是             │ 否
                    ▼                  ▼
       ┌─────────────────────┐     ┌─────────────────────┐
       │  规则结果直接答复    │     │ ML / LLM  Fallback   │
       └────────┬────────────┘     └────────┬────────────┘
                        ▼                           ▼
               ┌────────────────────────────┐
               │       最终答复输出          │
               └────────────────────────────┘

3️⃣ 设计原则

3.1 规则优先匹配

  • 业务关键场景(如支付时间、公司名称、合同义务)优先用 DependencyMatcher

  • 高置信度规则 → 可直接答复 → 无需进入 LLM

3.2 Fallback 策略

  • DependencyMatcher 匹配失败 or 不足覆盖 → fallback 到 ML / LLM

  • Fallback 可用:

    • 传统 ML 分类器

    • BERT / RoBERTa QA 模型

    • RAG Pipeline → embedding + retrieval + LLM

3.3 策略切换阈值设计

  • 可配置 规则置信度阈值

  • 部分场景允许 “规则 + ML 混合结果融合” → voting / reranking

  • 需记录日志 → 支撑后续优化


4️⃣ 代码示例框架

4.1 Pipeline 主控逻辑

class HybridQAPipeline:
    def __init__(self, matcher_engine, ml_model):
        self.matcher_engine = matcher_engine
        self.ml_model = ml_model

    def process_query(self, query_text):
        # Step 1: DependencyMatcher 匹配
        rule_result = self.matcher_engine.match(query_text)

        if rule_result and rule_result["confidence"] >= 0.9:
            return {
                "source": "rule",
                "answer": rule_result["answer"],
                "confidence": rule_result["confidence"]
            }

        # Step 2: fallback 到 ML / LLM
        ml_answer, ml_confidence = self.ml_model.predict(query_text)

        return {
            "source": "ml",
            "answer": ml_answer,
            "confidence": ml_confidence
        }

4.2 Matcher Engine 统一接口示例

class MatcherEngine:
    def __init__(self, matcher, nlp):
        self.matcher = matcher
        self.nlp = nlp

    def match(self, text):
        doc = self.nlp(text)
        matches = self.matcher(doc)

        if matches:
            # 简化示例,实际可做更复杂 confidence 计算
            return {
                "answer": self._extract_answer(doc, matches),
                "confidence": 0.95
            }
        else:
            return None

5️⃣ 常见业务落地策略

5.1 法律 / 合同 QA

  • 义务、违约、金额 → 规则优先

  • 案例推理、模糊问法 → ML fallback

5.2 医疗问答

  • 标准诊疗流程 → 规则优先

  • 用户开放性提问 → ML fallback

5.3 电商客服 QA

  • 售后政策、运费 → 规则优先

  • 个性化推荐 / 闲聊 → ML fallback


6️⃣ 日志与监控建议

✅ 每次 query → 记录:

  • 是否命中规则

  • 规则名称 / 版本

  • fallback 到 ML 的情况

  • 最终答复 + 置信度

  • 用户反馈(若可用)

👉 用于后续规则优化、ML fine-tuning 数据积累


7️⃣ 优化建议

规则与 ML 分工清晰
✅ 规则模块单独可部署 → 热更新
✅ fallback 层支持 AB test → 动态优化策略
✅ 日志全链路打通 → 支撑持续优化


8️⃣ 小结

DependencyMatcher + ML 混合策略 Pipeline 是当前企业级 QA / RAG 系统的主流架构模式:

✅ 高置信度场景规则保障 → 快速响应 → 可解释
✅ 长尾复杂场景 fallback → 保证覆盖
✅ 两者结合 → 兼顾准确率、召回率、稳定性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值