- 博客(239)
- 资源 (3)
- 收藏
- 关注
原创 YOLOv7 技术详解(Real-Time Dynamic Label Assignment + Model Scaling)
输出层级输出张量形状描述P3(80×80)小目标预测P4(40×40)中目标预测P5(20×20)大目标预测其中85 = 4 (坐标) + 1 (objectness) + 80 (class probs)改进点内容是否论文提出是否开源实现✅ ELAN 主干网络✅ 是✅ 是上采样 + Concatenate✅ 否(继承自 YOLOv5)✅ 是reg/obj/cls 分支分离✅ 否(继承自 YOLOv5)✅ 是✅ DFL Loss(边界框回归)分布式边界框回归。
2025-07-04 14:29:09
453
原创 DETR 技术详解(Detection Transformer)
DataLoader → Mosaic/CopyPaste → ResNet-50 → FPN(可选) → Positional Encoding → Transformer Encoder → Transformer Decoder → Hungarian Matching → Loss Calculation (L1 + GIoU + BCE) → Backpropagation阶段内容✅ 预处理图像归一化 + Tokenization✅ 视觉编码。
2025-07-04 14:22:21
315
原创 RT‑DETR 系列发展时间顺序
RT‑DETR 代表了 Transformer 检测器向实时性能发展的趋势,通过一系列工程和训练优化,实现了比主流 YOLO 系列更优的速度–精度平衡。最新的 RT‑DETRv3 在训练统一性上继续深入,是当前端到端检测的先进方向。
2025-07-04 14:21:17
125
原创 RT‑DETRv2 详解:Real‑Time DETR 的 Bag‑of‑Freebies 与部署优化
RT‑DETRv2 是在 RT‑DETR 的基础上提出的高效实时检测 Transformer,通过工程优化和训练改进进一步提升性能。
2025-07-04 14:20:04
293
原创 RT‑DETRv3 深度解析:分层式 Dense Positive Supervision 实现实时检测升级
RT‑DETRv3 在原有 RT‑DETR 架构基础上,针对训练阶段引入密集监督和扰动机制,成功提升 +1.4~1.6 AP,成为当前实时检测 Transformer 的优选方案。其训练-推理分离设计兼顾性能和效率,适合用于高性能检测系统研发布局。
2025-07-04 14:18:36
373
原创 YOLOv2 正负样本分配机制详解
某个 Ground Truth Box被分配给与其 IOU 最大的 Anchor Box。分配发生在该目标中心点所在的网格 cell 内。每个 Ground Truth 只分配给一个 Anchor(最佳匹配)。即:一张图中有多个目标,每个目标仅分配给一个最合适的 Anchor。YOLOv2 中的正负样本策略,主要围绕 Anchor Box 与 Ground Truth 的匹配关系:• 正样本:与 GT 匹配 IOU 最大的 Anchor• 负样本:其余 Anchor 且 IOU 低。
2025-07-03 14:32:09
480
原创 YOLO 中的 Confidence 与 Class Probability 区别详解
名称含义位置相关类别相关Confidence该框含有目标 + 位置是否准确✅❌如果有目标,是哪个类别❌✅综合考虑目标有无 + 属于哪个类✅✅某个 Ground Truth Box被分配给与其 IOU 最大的 Anchor Box。分配发生在该目标中心点所在的网格 cell 内。每个 Ground Truth 只分配给一个 Anchor(最佳匹配)。即:一张图中有多个目标,每个目标仅分配给一个最合适的 Anchor。
2025-07-03 14:28:30
777
原创 YOLO 中的三大框类型全解析:Ground Truth、Anchor、Bounding Box 有何区别?
🟥 1. Ground Truth Box(真值框)预设的一些模板框,模型学习时的“参考基准”。🟨 3. Bounding Box(预测框)🟦 2. Anchor Box(锚框)模型预测出来的目标框,最终输出结果。数据集中人工标注的真实目标位置。
2025-07-03 14:27:59
256
原创 YOLO 推理部署全方案」:一文掌握部署方式与性能对比!
追求速度 / 云部署:优选TensorRT(float16 模式下速度极致)跨平台服务 / Web接口部署:推荐Intel 架构边缘部署:使用OpenVINO移动端轻量部署(安卓):使用NCNN或TFLite。
2025-07-03 14:27:26
555
原创 YOLOv3-SPP 的 ONNX 导出与部署指南
││├— Detection Head(三个层级输出)│└— Output: detections [1, 255, 13, 13](P5)+ P4/P3 输出(若多尺度输出启用)步骤内容✅ Step 1加载 PyTorch 模型(Darknet-53 + SPP)✅ Step 2构造 dummy input(416×416×3)✅ Step 3使用 torch.onnx.export 导出模型✅ Step 4。
2025-07-03 11:17:12
442
原创 YOLOv3-SPP 的 SPP 模块深度解析:空间金字塔池化如何提升多尺度感知?
SPP(Spatial Pyramid Pooling)是一种多尺度池化操作✅ 允许输入图像为任意尺寸;✅ 提升感受野,增强语义表达;✅ 对大目标识别更有帮助;模块位置输入通道数输出通道数Darknet-53 最后一层之后1024DataLoader → Mosaic/CopyPaste → Darknet-53 → SPP 模块 → Detect Head → Loss Calculation (CIoU + BCE) → Backpropagation。
2025-07-02 17:38:44
829
原创 YOLOv3-SPP Auto-Anchor 聚类调试指南!
YOLO 系列模型默认使用 COCO 数据集上 K-Means 聚类得到的 anchor boxes,但在实际项目中,不同数据集的目标尺度分布差异较大,因此需要根据你的数据集重新聚类。步骤内容✅ Step 1准备数据集标注文件(VOC/COCO)✅ Step 2提取所有 bounding box 的宽高信息✅ Step 3对 bounding box 使用 K-Means 聚类✅ Step 4输出 9 个 anchor(3 层 × 3 个)✅ Step 5替换.cfg。
2025-07-02 17:37:25
961
原创 YOLOv3-SPP 深度解析:引入 SPP 结构,显著提升目标检测性能!
↓↓↓Detection Heads(三个层级)├— P3: 80×80 → 小目标检测├— P4: 40×40 → 中目标检测└— P5: 20×20 → 大目标检测DataLoader → Mosaic/CopyPaste → Darknet-53 / CSPDarknet53 → SPP 模块 → Detect Head → Loss Calculation (CIoU + BCE) → Backpropagation✅ 引入 SPP 模块,提升大目标识别能力;
2025-07-02 17:35:49
843
原创 YOLOX 深度解析:无 Anchor 设计 + 强大训练基线,全面超越传统 YOLO!
输出层级特征图尺寸输出通道数P3/880×80无(anchor-free)或默认 anchor85(4+1+80)P4/1640×40无或 COCO 默认 anchor85P5/3220×20无或 COCO 默认 anchor85✅ 注:YOLOX 默认使用 anchor-free 模式,也可切换回 anchor-based。
2025-07-02 17:33:53
1237
原创 RT-DETR 模型结构全面解析:实时检测新突破
模块内容✅ 主干网络✅ Neck 结构✅ EncoderHybrid Encoder(动态卷积 + 投影)✅ DecoderDeformable Attention(稀疏采样)✅ Head 输出reg/cls 分支分离✅ 标签分配Hungarian Matcher(训练阶段)✅ 推理优化Eliminate NMS(推理阶段直接输出 top-k)✅ 数据增强策略Mosaic + CopyPaste + HSV 扰动RT-DETR 是目前最具潜力的端到端目标检测模型之一。
2025-07-01 15:59:57
759
原创 RT-DETR 技术原理与应用全解:打造实时目标检测新基准
│││ ├— 上采样 + Concatenate│ └— 下采样 + Concatenate│├— Encoder: Hybrid Transformer → 可学习卷积投影│ ├— 动态卷积替换多头注意力 |│ └— 多尺度信息聚合 |││ └— 多尺度采样 |│改进点内容是否首次提出是否开源实现动态卷积替代标准 Transformer✅ 是✅ 是多尺度采样,避免全局注意力✅ 否(继承 Deformable DETR)✅ 是✅ 自适配标签分配。
2025-07-01 15:58:44
764
原创 YOLOv10 全面升级解析:关键改进点一文掌握
改进点内容是否论文提出是否开源实现reg 独立,obj/cls 共享✅ 是✅ 是训练阶段直接选择 top-k 预测框✅ 是✅ 是✅ Anchor-Free 模式默认启用,无需手动设置 anchor✅ 是✅ 是✅ DFL Loss分布式边界框回归✅ 是(ECCV 2020)✅ 是✅ BiFPN 特征融合双向特征金字塔✅ 否(继承自 YOLOv9)✅ 是✅ 多任务统一接口✅ 是✅ 是✅ 模型轻量化设计更适用于边缘设备✅ 是✅ 是✅ 部署优化支持✅ 是。
2025-07-01 15:56:31
998
原创 多线程环境下的线程安全资源与缓存池设计:ThreadSafeObject 与 CachePool 实例解析
项目作用特点封装一个资源并加锁控制单个对象的线程访问CachePool管理多个加锁的资源支持 LRU 缓存和线程安全访问管理。
2025-06-30 10:07:15
256
原创 基于RapidOCR与LangChain的PDF图文内容解析器开发
是 LangChain 中用于加载非结构化文件的标准工具,而是底层库中用于精细切分文本的方法,两者结合可以高效地将原始文本转化为结构化的文档对象,供 LLM 使用。继承重写方法,这是所有子类必须实现的方法。返回值是一个List,包含从 PDF 中提取出的所有“元素”(如段落、标题等)是一个增强版的 PDF 加载器,它不仅能提取 PDF 中的文本,还能识别图像并执行 OCR,最后将内容结构化后返回,兼容 LangChain 的标准接口。
2025-06-30 10:06:17
695
原创 基于RapidOCR与LangChain的PDF图文内容解析器开发
是 LangChain 中用于加载非结构化文件的标准工具,而是底层库中用于精细切分文本的方法,两者结合可以高效地将原始文本转化为结构化的文档对象,供 LLM 使用。继承重写方法,这是所有子类必须实现的方法。返回值是一个List,包含从 PDF 中提取出的所有“元素”(如段落、标题等)是一个增强版的 PDF 加载器,它不仅能提取 PDF 中的文本,还能识别图像并执行 OCR,最后将内容结构化后返回,兼容 LangChain 的标准接口。
2025-06-30 09:31:48
384
原创 基于 SQLite 和 ORM 的学生信息管理系统:Python 工程化实战指南
• 分层清晰:数据模型、业务逻辑、数据库初始化互不耦合。• 可复用:repository 层可直接用于 FastAPI 或其他框架。• 易扩展:后续增加 Teacher、Course 只需新增模型和仓库。《下篇文章将会实现缓存池的加载部分》
2025-06-30 09:30:52
355
原创 全流程还原!YOLOv10 训练与推理模拟实战教程
改进方向内容是否论文提出是否开源实现主干网络优化❌ 否(继承自 YOLOv8)✅ 是Neck 特征融合✅ 是✅ 是Head 输出结构Partial Decoupled Head(共享 obj/cls 分支)✅ 是✅ 是损失函数优化✅ 是(ECCV 2020)✅ 是数据增强策略✅ 是✅ 是标签分配机制✅ 是(继承自 YOLOv8)✅ 是模型轻量化设计✅ 是✅ 是推理优化支持✅ 是✅ 是多任务统一接口✅ 是✅ 是。
2025-06-27 09:25:49
406
原创 YOLOv10 技术详解:TAL + DFL + 多任务统一接口
DataLoader → Mosaic/CopyPaste → C2f 主干网络 → BiFPN → Detect Head → TAL 标签分配 → Loss Calculation (CIoU + BCE + DFL) → Backpropagation✅ 引入 Partial Decoupled Head,减少冗余计算;✅ 使用 TAL(Task-Aligned Assigner)替代 SimOTA;✅ 支持 DFL Loss,提升边界框稳定性;
2025-06-27 09:25:04
292
原创 YOLOv9 改进点详解
输出层级输出张量形状描述P3(80×80)小目标预测P4(40×40)中目标预测P5(20×20)大目标预测改进方向内容是否论文提出是否开源实现主干网络优化GLEncoder✅ 是✅ 是Neck 特征融合✅ 是✅ 是Head 输出结构解耦头设计(reg/obj/cls 分离)✅ 是✅ 是损失函数优化✅ 是✅ 是数据增强策略✅ 是✅ 是标签分配机制✅ 是(继承自 YOLOv8)✅ 是模型轻量化可重参数化模块✅ 是✅ 是推理优化。
2025-06-27 09:23:26
453
原创 模拟 YOLOv9 的训练与推理流程
改进点内容是否论文提出是否开源实现双分支编码器结构✅ 是✅ 是✅ BiFPN双向特征金字塔✅ 是✅ 是reg/obj/cls 分支分离✅ 是✅ 是✅ DFL Loss分布式边界框回归✅ 是(ECCV 2020)✅ 是✅ Mosaic 数据增强提升小目标识别能力✅ 是✅ 是✅ TAL 标签分配动态选择正样本✅ 是(继承自 YOLOv8)✅ 是✅ 自动锚框支持可根据数据集重新聚类✅ 是✅ 是✅ 支持部署格式✅ 是✅ 是✅ 多任务支持✅ 是。
2025-06-27 09:22:59
539
原创 YOLOv9 升级值不值?五大关键改进点全面解析
输出层级输出张量形状描述P3(80×80)小目标预测P4(40×40)中目标预测P5(20×20)大目标预测改进方向内容是否论文提出是否开源实现主干网络优化GLEncoder✅ 是✅ 是Neck 特征融合✅ 是✅ 是Head 输出结构解耦头设计(reg/obj/cls 分离)✅ 是✅ 是损失函数优化✅ 是✅ 是数据增强策略✅ 是✅ 是标签分配机制✅ 是(继承自 YOLOv8)✅ 是模型轻量化可重参数化模块✅ 是✅ 是推理优化。
2025-06-26 09:29:59
498
原创 YOLOv9 实战复现:训练与推理流程全指南
改进点内容是否论文提出是否开源实现双分支编码器结构✅ 是✅ 是✅ BiFPN双向特征金字塔✅ 是✅ 是reg/obj/cls 分支分离✅ 是✅ 是✅ DFL Loss分布式边界框回归✅ 是(ECCV 2020)✅ 是✅ Mosaic 数据增强提升小目标识别能力✅ 是✅ 是✅ TAL 标签分配动态选择正样本✅ 是(继承自 YOLOv8)✅ 是✅ 自动锚框支持可根据数据集重新聚类✅ 是✅ 是✅ 支持部署格式✅ 是✅ 是✅ 多任务支持✅ 是。
2025-06-26 09:29:22
602
原创 YOLOv8 核心技术解读:TAL、DFL 多任务机制深入剖析
改进点内容是否论文提出是否开源实现主干网络❌ 否✅ 是Neck 结构✅ 是(继承自 YOLOv7)✅ 是Head 输出解耦头设计(reg/obj/cls 分离)✅ 是✅ 是损失函数✅ 是(DFL Loss)✅ 是数据增强✅ 是✅ 是标签分配❌ 否(Ultralytics 实现)✅ 是自动锚框AutoAnchor 聚类✅ 是(仿照 YOLOv5)✅ 是推理优化ONNX / TensorRT 支持良好✅ 是✅ 是多任务支持✅ 是✅ 是。
2025-06-25 17:41:51
638
原创 YOLOv8 网络结构 + 训练推理全流程详解(入门到部署)
输出层级特征图尺寸输出通道数P3/880×80无(anchor-free)或默认 anchor84(4+1+80)P4/1640×40anchor-free 或 COCO 默认 anchor84P5/3220×20anchor-free 或 COCO 默认 anchor84✅ 注:YOLOv8 默认使用 anchor-free 模式(如 yolov8n/s/m/l/x),也可切换回 anchor-based。模块内容✅ 主干网络✅ Neck 结构。
2025-06-25 17:41:21
1037
原创 YOLOv8 技术演进大揭秘:这些改进点你必须知道!
输出层级输出张量形状描述P3(80×80)无(anchor-free)或 [10,13], [16,30], [33,23]小目标预测P4(40×40)中目标预测P5(20×20)大目标预测改进方向内容是否论文提出是否开源实现主干网络❌ 否✅ 是Neck 结构✅ 是(继承自 YOLOv7)✅ 是Head 输出解耦头设计(reg/obj/cls 分离)✅ 是✅ 是损失函数✅ 是✅ 是数据增强✅ 是✅ 是标签分配❌ 否(Ultralytics 实现)
2025-06-25 17:39:42
963
原创 目标检测核心组件详解:TAL、DFL、SimOTA 原理与实践
在目标检测任务中,正样本划分和边界框回归方式是影响模型性能的关键因素之一。技术模型支持来源✅ SimOTAYOLOX✅ DFL✅ TALYOLOv8 默认使用YOLOv8 官方文档 + 源码以下内容均来自上述来源,不虚构、不扩展未验证的内容。YOLOv8 官方文档Ultralytics GitHub 实现📌 注意:TAL 并非正式发表论文提出,而是 Ultralytics 在 YOLOv8 中引入的一种新的标签分配机制。YOLOv6 开源实现YOLOv8 源码。
2025-06-24 10:33:43
1106
原创 YOLO 系列发展时间线梳理:各版本发布节奏与核心升级全览
阶段内容统一建模 + 多尺度预测✅ YOLOv4引入 CIoU、DIoU-NMS、CSPDarknet✅ YOLOv5工业级部署 + SimOTA(大模型)✅ YOLOv6RepVGG 主干 + DFL Loss✅ YOLOv7扩展结构 + 模型集成✅ YOLOv8TAL 标签分配 + DFL + 多任务支持掌握这些版本的核心改进点,有助于你理解现代目标检测框架的设计理念,并为进一步调优打下基础。📌。
2025-06-24 10:28:31
1138
原创 一文掌握 YOLO 中的 IoU 演化:从 IoU 到 DIoU、CIoU、SIoU
IoUIoU即:两个框的交集面积除以并集面积。GIoUIoU−∣C∖A∪B∣∣C∣GIoUIoU−∣C∣∣C∖A∪B∣CCC是最小闭包框(包含 A 和 B);第二项表示非重叠区域对 C 的比例;DIoUIoU−ρ2bbgtd2DIoUIoU−d2ρ2bbgtρ\rhoρ:预测框与真实框中心点之间的欧氏距离;ddd:最小闭包框的对角线长度;
2025-06-23 16:02:39
629
原创 YOLOv6 全面拆解:损失函数与正负样本匹配机制详解
样本类型条件是否参与定位损失是否参与置信度损失是否参与分类损失✅ 正样本IoU 最大 或 SimOTA 成本最低✅ 是✅ 是✅ 是❌ 负样本无任何 GT 与其重叠❌ 否✅ 是(confidence 为 0)❌ 否🧩 Ignore 样本IoU > ignore_thresh 但非最佳匹配❌ 否❌ 否(默认)❌ 否模块内容K-Means 聚类得到,每层 3 个 anchor✅ 正样本选择yolov6n/s:IoU 最大匹配;yolov6m+:SimOTA 动态分配。
2025-06-23 16:01:16
555
原创 YOLOv6 技术详解:全新训练机制与优化策略全解析
│├─ RepVGG 主干网络(含 Residual 分支)│ ├─ RepBlock × N(可重参数化)│ └─ 下采样层(MaxPool 或 Strided Conv)│├─ EfficientRep Neck(轻量级 PANet)│ ├─ 上采样 + Concatenate│ └— 下采样 + Concatenate│└─ Decoupled Head(解耦头)├─ Reg Branch(bounding box 回归)├— Obj Branch(对象置信度)
2025-06-23 16:00:29
993
原创 YOLOv1–v5 正负样本匹配机制演变全解:从手工到动态分配
特征内容正样本匹配方式IoU 最大匹配是否支持多正样本❌ 否是否使用 anchor boxes❌ 否负样本处理参与置信度损失,不参与定位和分类损失是否按类别执行 NMS✅ 是特征内容正样本匹配方式IoU 最大匹配是否支持多正样本❌ 否是否使用 anchor boxes✅ 是(K-Means 聚类)负样本处理不包含物体的 anchor是否按类别执行 NMS✅ 是特征内容正样本匹配方式IoU 最大匹配是否支持多正样本❌ 否。
2025-06-23 15:57:34
903
原创 YOLOv5 技术详解:目标检测实战中的性能优化秘诀
特征图层级输出张量形状描述P3(80×80)小目标预测P4(40×40)中目标预测P5(20×20)大目标预测改进方向内容是否论文提出是否开源实现主干网络CSPDarknet53(轻量化)❌ 第三方提出✅ Ultralytics 实现Neck 结构PANet❌ 第三方提出✅ Ultralytics 实现Head 输出解耦头设计(reg/obj/cls 分离)✅ Ultralytics 设计✅ 实现损失函数✅ Ultralytics 实现✅ 实现数据增强。
2025-06-23 15:51:18
1106
原创 YOLOv5s 模型结构全图解:从输入到输出的每一层都讲透
输出层级特征图尺寸输出通道数P3/880×80256P4/1640×40512P5/3220×201024✅ 这些 anchor 是通过 K-Means 聚类 COCO 数据集得到的,与 YOLOv4 相同。│├─ Focus Layer → Conv + Slice 操作├─ CSPDarknet53 主干网络││ ├─ 上采样 + Concatenate│ └─ C3 Block + 下采样│模块内容✅ 主干网络CSPDarknet53(轻量化版本)
2025-06-23 15:50:29
1274
原创 YOLOv5 全结构详解:网络模块、损失函数与检测头全解析
输出层级特征图尺寸输出通道数P3/880×80256P4/1640×40512P5/3220×201024✅ 这些 anchor 是通过 K-Means 聚类 COCO 数据集得到的,与 YOLOv4 相同。│├─ Focus Layer → Conv + Slice 操作├─ CSPDarknet53 主干网络││ ├─ 上采样 + Concatenate│ └─ C3 Block + 下采样│模块内容✅ 主干网络CSPDarknet53(轻量化版本)
2025-06-17 09:34:34
747
原创 YOLOv5 改进点总览:轻量化、高精度的背后有哪些魔改?
改进方向内容是否论文提出是否开源实现主干网络❌ 第三方提出✅ Ultralytics 实现Neck 结构PANet❌ 第三方提出✅ Ultralytics 实现Head 结构✅ Ultralytics 设计✅ 实现损失函数CIoU + BCE✅ 官方实现✅ 实现数据增强✅ 官方实现✅ 实现标签分配SimOTA(大模型)✅ 引用 YOLOX 方法✅ 实现自动锚框AutoAnchor 聚类✅ 官方实现✅ 实现推理优化。
2025-06-17 09:33:42
1043
spring-jar.zip
2019-06-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人