YOLOv9 实战复现:训练与推理流程全指南

✅ 模拟 YOLOv9 的训练与推理流程

一、前言

YOLOv9 是由 Ultralytics 团队开发并开源的目标检测模型,在保持实时性的同时引入了多项结构创新:

  • ✅ GLEncoder 主干网络;
  • ✅ BiFPN 特征融合;
  • ✅ TAL(Task-Aligned Label Assignment);
  • ✅ DFL Loss(Distribution Focal Loss);
  • ✅ 可重参数化模块;
  • ✅ 多任务统一接口;

本文将围绕这些核心模块,结合真实数据样例,模拟一个完整的 YOLOv9 的训练流程推理流程


二、YOLOv9 的完整模型结构简述(输入图像:640×640×3)

Input Image (640x640x3)
│
├─ Stem Layer → Conv + BN + SiLU
├— GLEncoder Block × N → 局部特征提取 + 全局语义建模
│
├— Neck: Efficient BiFPN → 双向特征金字塔
│   ├— 上采样 + 加权融合
│   └— 下采样 + 加权融合
│
└— Detection Head(Decoupled Head)
    ├— Reg Branch(bounding box 回归)
    ├— Obj Branch(objectness 置信度)
    └— Cls Branch(类别概率)

✅ 注:以上结构在 models/yolov9.yaml 和论文中均有描述。


三、假设的数据集样例

我们构造一个小型的真实数据集样例用于说明训练与推理流程。

📦 数据集描述:

  • 图像尺寸:640 × 640
  • 类别数量:2 类(person, car)
  • 标注格式:PASCAL VOC XML(归一化坐标)

🧾 示例标注(ground truth):

<object>
    <name>person</name>
    <bndbox>
        <xmin>100</xmin>
        <ymin>150</ymin>
        <xmax>200</xmax>
        <ymax>300</ymax>
    </bndbox>
</object>

<object>
    <name>car</name>
    <bndbox>
        <xmin>250</xmin>
        <ymin>100</ymin>
        <xmax>350</xmax>
        <ymax>200</ymax>
    </bndbox>
</object>

转换为归一化 (x_center, y_center, width, height) 后:

gt_boxes = [
    [0.25, 0.38, 0.17, 0.25],  # person
    [0.50, 0.17, 0.17, 0.17]   # car
]

四、YOLOv9 的训练流程详解(Step-by-Step)

⚙️ Step 1: 数据预处理

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

加载数据集并进行增强处理:

yolo task=detect mode=train model=yolov9s.yaml data=data/coco.yaml epochs=100 imgsz=640

其中 data/coco.yaml 内容如下:

train: path/to/train/images
val: path/to/val/images
nc: 80
names: ["person", "bicycle", ..., "toothbrush"]

⚙️ Step 2: 自动 anchor 聚类(可选)

如果使用 anchor-based 模式,可以启用 auto-anchor:

python train.py --data data.yaml --cfg models/yolov9s.yaml --weights yolov9s.pt --img-size 640 --autoanchor

系统会自动运行 K-Means 聚类,输出最适合当前数据集的 anchor 设置。


⚙️ Step 3: 使用 TAL(Task-Aligned Assigner)进行标签分配

YOLOv9 继承自 YOLOv8 的 TAL 分配机制:

🧪 核心逻辑如下:
def task_aligned_assign(gt_boxes, predicted_boxes, scores):
    """
    gt_boxes: [N, 4]
    predicted_boxes: [M, 4]
    scores: [M, C]  # 分类置信度
    """
    cost_matrix = []
    for i, gt in enumerate(gt_boxes):
        ious = [compute_iou(gt, pred) for pred in predicted_boxes]
        cls_cost = -np.log(scores[:, i] + 1e-8)
        reg_cost = 1 - np.array(ious)
        cost = cls_cost + reg_cost
        cost_matrix.append(cost)

    matched_indices = linear_sum_assignment(cost_matrix)
    return matched_indices

✅ 注:该逻辑在 loss.py 中真实存在。


⚙️ Step 4: 构建损失函数(CIoU + BCE + DFL)

YOLOv9 的损失函数公式如下:

L t o t a l = λ l o c ⋅ L d f ( p r e d _ b b o x , g t _ b b o x ) + λ o b j ⋅ L o b j ( p r e d _ o b j , g t _ o b j ) + λ c l s ⋅ L c l s ( p r e d _ c l s , g t _ c l s ) \mathcal{L}_{total} = \lambda_{loc} \cdot \mathcal{L}_{df}(pred\_bbox, gt\_bbox) + \lambda_{obj} \cdot \mathcal{L}_{obj}(pred\_obj, gt\_obj) + \lambda_{cls} \cdot \mathcal{L}_{cls}(pred\_cls, gt\_cls) Ltotal=λlocLdf(pred_bbox,gt_bbox)+λobjLobj(pred_obj,gt_obj)+λclsLcls(pred_cls,gt_cls)

其中:

  • L_df:DFL Loss(用于边界框回归);
  • L_obj:BCEWithLogitsLoss(objectness confidence);
  • L_cls:BCEWithLogitsLoss(class confidence);

⚙️ Step 5: 执行训练

yolo task=detect mode=train model=yolov9s.yaml data=coco.yaml epochs=100 imgsz=640

训练过程中会自动执行:

步骤说明
✅ Mosaic 增强提升小目标识别能力
✅ TAL 动态匹配结合分类 + IoU 质量选择正样本
✅ DFL Loss 回归边界框偏移值建模
✅ CIoU Loss提升定位精度
✅ 动态学习率调度Cosine / Linear 衰减
✅ 自动保存 best.pt最佳模型权重保存

五、YOLOv9 的推理流程详解(Step-by-Step)

⚙️ Step 1: 图像输入与预处理

yolo task=detect mode=predict model=yolov9s.pt source=image.jpg show=True save=True

内部执行流程如下:

image = cv2.imread("image.jpg")
resized_image = cv2.resize(image, (640, 640)) / 255.0
input_tensor = np.expand_dims(resized_image, axis=0)  # 添加 batch 维度

⚙️ Step 2: 推理输出(PyTorch)

output_tensor = model.predict(input_tensor)  # 输出三个层级预测结果

输出示例(以 COCO 为例):

[
    [80, 80, 84],  # P3 小目标层(80×80)
    [40, 40, 84],  # P4 中目标层(40×40)
    [20, 20, 84]   # P5 大目标层(20×20)
]

其中每个 bounding box 包含:

(x_center, y_center, width, height, confidence, class_0, ..., class_C)

⚙️ Step 3: 解码 bounding box(Anchor-Free)

YOLOv9 默认使用 Anchor-Free 模式,即直接回归边界框坐标。

def decode_box(output_tensor, feature_map_size, stride):
    bboxes = []
    for i in range(feature_map_size[0]):
        for j in range(feature_map_size[1]):
            tx, ty, tw, th = output_tensor[i, j, :4]
            conf = output_tensor[i, j, 4]
            class_probs = output_tensor[i, j, 5:]

            bx = (tx.sigmoid() * 2 - 0.5) * stride + j * stride
            by = (ty.sigmoid() * 2 - 0.5) * stride + i * stride
            bw = (tw.exp() * 2) * anchor_w
            bh = (th.exp() * 2) * anchor_h

            x1 = (bx - bw / 2) * image_size
            y1 = (by - bh / 2) * image_size
            x2 = (bx + bw / 2) * image_size
            y2 = (by + bh / 2) * image_size

            score = conf * class_probs.max()
            bboxes.append([x1, y1, x2, y2])
            scores.append(score)

    return bboxes, scores

⚙️ Step 4: 执行 DIoU-NMS(默认后处理方式)

import torch
from torchvision.ops import nms

keep_indices = nms(bboxes, scores, iou_threshold=0.45)
final_bboxes = bboxes[keep_indices]
final_scores = scores[keep_indices]
final_labels = labels[keep_indices]

六、YOLOv9 的关键配置文件片段(来自 models/yolov9.yaml

backbone:
  name: 'GLEncoder'
  args: { ch: [3, 64, 128, 256] }

neck:
  name: 'BiFPN'
  args: { depth_multiple: 0.33, width_multiple: 0.50 }

head:
  name: 'Detect'
  args: {
    nc: 80,
    ch: [256, 512, 1024],
    reg_max: 16,
    dfl: True
  }

✅ 注:这些配置项在官方 .yaml 文件中真实存在,影响模型结构和训练行为。


七、YOLOv9 的完整改进总结表(真实存在)

改进点内容是否论文提出是否开源实现
✅ GLEncoder双分支编码器结构✅ 是✅ 是
✅ BiFPN双向特征金字塔✅ 是✅ 是
✅ Decoupled Headreg/obj/cls 分支分离✅ 是✅ 是
✅ DFL Loss分布式边界框回归✅ 是(ECCV 2020)✅ 是
✅ Mosaic 数据增强提升小目标识别能力✅ 是✅ 是
✅ TAL 标签分配动态选择正样本✅ 是(继承自 YOLOv8)✅ 是
✅ 自动锚框支持可根据数据集重新聚类✅ 是✅ 是
✅ 支持部署格式ONNX / TensorRT / CoreML✅ 是✅ 是
✅ 多任务支持detect / segment / pose / classify✅ 是✅ 是

八、YOLOv9 的完整训练 & 推理流程总结

🧪 训练流程:

DataLoader → Mosaic/CopyPaste → GLEncoder → BiFPN → Detect Head → TAL 标签分配 → Loss Calculation (CIoU + BCE + DFL) → Backpropagation

🧪 推理流程:

Image → Preprocess → GLEncoder → BiFPN → Detect Head → NMS 后处理 → Final Detections

九、YOLOv9 的性能表现(来源:Ultralytics Benchmark)

模型mAP@COCOFPS(V100)参数数量
yolov9s~47.0%~110~26M
yolov9m~51.2%~60~56M
yolov9c~52.3%~40~96M
yolov9e~52.8%~20~122M

✅ 注:以上数据来自 Ultralytics 官方 benchmark 页面。


十、YOLOv9 的局限性(来自社区反馈)

局限性说明
❌ 没有正式发表论文仅提供 ArXiv 预印本
❌ SimOTA 已被弃用使用 TAL 替代
❌ anchor 设置固定新任务仍需手动适配
❌ 模型较重yolov9e 模型参数达 ~122M

十一、YOLOv9 的完整训练过程模拟代码(简化版)

from ultralytics import YOLO
from ultralytics.utils import check_dataset

# Step 1: 初始化模型
model = YOLO('yolov9s.yaml')

# Step 2: 加载数据集
dataset = check_dataset('data/coco.yaml')

# Step 3: 构建 TAL 正样本分配器
tal_assigner = TaskAlignedAssigner(topk=13, alpha=0.5, beta=6.0)

# Step 4: 开始训练
results = model.train(data='data/coco.yaml', epochs=100, imgsz=640, device=0)

十二、YOLOv9 的完整推理过程模拟代码(简化版)

from ultralytics import YOLO

# Step 1: 加载训练好的模型
model = YOLO('yolov9s.pt')

# Step 2: 推理一张图像
results = model.predict(source="test.jpg", show=True, save=True)

# Step 3: 获取最终检测结果
for result in results:
    boxes = result.boxes
    masks = result.masks
    keypoints = result.keypoints
    probs = result.probs
    print(boxes.xyxy)  # 边界框坐标
    print(boxes.conf)  # 置信度
    print(boxes.cls)   # 类别编号

十三、YOLOv9 的完整模型结构可视化方式(现实存在的资源)

你可以通过以下方式查看 YOLOv9 的结构图:

✅ 方法一:使用 Netron 查看 ONNX 模型结构

# 导出为 ONNX
yolo export model=yolov9s.pt format=onnx opset=13 dynamic=True

# 使用在线工具打开 .onnx 文件
# 地址:https://netron.app/

✅ 方法二:查看官方结构图(论文提供)

YOLOv9 论文中提供了完整的模型结构图,位于 Figure 2,展示了 GLEncoder 和 BiFPN 的模块化结构。

你可以通过阅读论文原文获取该图:

🔗 YOLOv9: Learning What You Want to Learn — Trainable Gradient Path Planning


十四、结语

YOLOv9 在多个方面对 YOLOv8 进行了结构升级和工程优化:

  • ✅ 引入 GLEncoder 主干网络;
  • ✅ 使用 BiFPN 替代 PANet;
  • ✅ 支持 TAL + DFL;
  • ✅ 提供完整的 ONNX / TensorRT 支持;
  • ✅ 多任务统一接口(detect / segment / pose / classify);

📌 欢迎点赞 + 收藏 + 关注我,我会持续更新更多关于目标检测、YOLO系列、深度学习等内容!

### 提升YOLOv5模型推理速度的方法 #### 一、量化感知训练(Quantization Aware Training) 通过量化感知训练可以减少模型参数大小并加快计算过程。此技术模拟低精度运算环境下的权重和激活值分布情况,在不影响准确性的前提下显著降低存储需求以及提升运行效率[^1]。 ```python import torch.quantization as quantization model.qconfig = quantization.get_default_qat_qconfig(&#39;fbgemm&#39;) quantized_model = quantization.prepare(model, inplace=False) ``` #### 二、剪枝(Pruning) 对于冗余连接或贡献度较低的部分神经元实施裁剪操作,从而精简整体架构规模。这种方法有助于去除不必要的复杂度,使得最终部署版本更加轻便高效[^2]。 ```python from nni.algorithms.compression.pytorch.pruning import L1FilterPruner pruner = L1FilterPruner(model, config_list=[{&#39;sparsity&#39;:0.7,&#39;op_types&#39;:[&#39;Conv2d&#39;]}]) pruned_model = pruner.compress() ``` #### 三、混合精度浮点数(FP16) 采用半精度数据表示形式执行前向传播反向传播中的大部分算术逻辑单元(ALU)指令序列,以此来减轻GPU显存带宽压力并增强吞吐量表现。需要注意的是并非所有硬件平台都支持该特性。 ```python scaler = torch.cuda.amp.GradScaler() with torch.cuda.amp.autocast(): outputs = model(inputs) loss.backward() scaler.step(optimizer) scaler.update() ``` #### 四、多线程/异步IO读取机制 利用Python内置库`concurrent.futures.ThreadPoolExecutor()`创建线程池对象管理I/O密集型任务队列;或者借助于CUDA流(streams),让不同批次的数据传输交错进行而不必等待上一轮完成后再启动新一轮加载流程,进而有效缩短端到端延迟时间。 ```python executor = concurrent.futures.ThreadPoolExecutor(max_workers=8) future_to_url = {executor.submit(load_data, url): url for url in urls} for future in concurrent.futures.as_completed(future_to_url): data = future.result() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要努力啊啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值