YOLOv2 正负样本分配机制详解

YOLOv2 正负样本分配机制详解

在目标检测任务中,正负样本的定义决定了哪些预测框用于训练,以及如何计算损失函数。YOLOv2 在 YOLOv1 的基础上,引入了 Anchor Boxes(锚框) 机制,正负样本的判断方式也发生了重要变化。


✅ 一、YOLOv2 中的 Anchor Box 引入

YOLOv2 将图像划分为 S×SS \times SS×S 网格,每个网格预测 BBB 个 Anchor Box(默认 5 个),每个 Anchor 预测:

  • 位置偏移 (tx,ty,tw,th)(t_x, t_y, t_w, t_h)(tx,ty,tw,th)
  • 置信度(objectness score)
  • 多个类别的概率(softmax 或 sigmoid)

🎯 二、正负样本的定义

1. 正样本(Positive Samples)

满足以下条件的预测框被视为正样本:

  • 某个 Ground Truth Box 被分配给 与其 IOU 最大的 Anchor Box
  • 分配发生在该目标中心点所在的网格 cell 内。
  • 每个 Ground Truth 只分配给 一个 Anchor(最佳匹配)

即:一张图中有多个目标,每个目标仅分配给一个最合适的 Anchor。


2. 负样本(Negative Samples)

  • 没有被任何 GT 分配的 Anchor 预测框。
  • 与所有 Ground Truth 的最大 IOU 低于阈值(通常为 0.5)

这些 Anchor 被作为负样本,仅用于训练置信度(objectness)为 0。


🧮 三、样本分配机制图示

Grid Cell (7x7)
  └─ 每个 Cell 预测 5 个 Anchor Box
        ├─ 与某个 GT IOU 最大 → 正样本
        ├─ IOU 太低 → 负样本
        └─ 其他 Anchor 忽略

四、与 YOLOv1 的区别

项目YOLOv1YOLOv2
Anchor❌ 无✅ 有
每个 GT 分配框数量多个(B 个)仅一个(最佳 Anchor)
负样本定义其余所有预测框未分配且 IOU < 阈值
正样本位置GT 中心落入的 Cell同上

五、📌 总结

YOLOv2 中的正负样本策略,主要围绕 Anchor Box 与 Ground Truth 的匹配关系:
• 正样本:与 GT 匹配 IOU 最大的 Anchor
• 负样本:其余 Anchor 且 IOU 低
• 忽略:其他 IOU 不高不低者(可选处理)

Bounding Box 与 Anchor 的关系详解

在目标检测中,Anchor Box 是模型预设的一组参考框模板,而 Bounding Box 是模型预测的最终目标框,两者之间的关系如下:

名称说明
Anchor Box预定义的固定尺寸框,用于覆盖不同尺寸、宽高比的目标
Bounding Box模型输出的框,用于拟合真实物体(Ground Truth Box)的位置

🔁 关系说明

  1. 模型以 Anchor 为起点,通过预测 偏移量(offset) 对其进行微调;
  2. 每个 Anchor 会输出一个预测框(Bounding Box);
  3. 训练过程中,选出与 Ground Truth 重合度最高(IoU 最大)的 Anchor,作为正样本;
  4. 最终的 Bounding Box 是:
    Bpred=Anchor+偏移量 B_{\text{pred}} = \text{Anchor} + \text{偏移量} Bpred=Anchor+偏移量

🧠 举例

  • Anchor: [w=100, h=200](模型预定义的框)
  • 偏移预测: [dx, dy, dw, dh]
  • 最终预测框 (Bounding Box): 根据 anchor + 偏移解码得到

Anchor 是起点,Bounding Box 是终点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要努力啊啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值