conda配置深度学习环境安装GPU版本,检查发现是CPU版本的简单解决办法。

    背景介绍:根据自己要复现的代码的环境要求,我选择了自己的pytorch版本是1.8.1,python==3.7+,再结合自己显卡的cuda版本,比如我是12.4,要选择的cudatoolkit版本应该小于你的cuda,如果找不到合适的,就先去升级你自己显卡的版本,在nVidia升级。

接下来是去pytorch官网找到我需要的pytorch版本的conda命令。

    这里我选择了cudatoolkit=11.3,按照此命令去conda安装,最后conda list 检查发现还是cpu版本。 

     看了很多文章,有的说是用conda里的pip渠道来安装,我试了还是不可以,仍然为cpu版本,这里附上一个链接。好文:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值