自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(707)
  • 收藏
  • 关注

原创 【转行大模型工程师笔记】10-编程能力微调相关数据

我挑了几篇我觉得相关数据集比较好用的论文读一下,尽量摘取有信息量的内容huggingface 找不到论文数据集,但有一个类似WizardCoder 是把 WizardLM 提出的指令进化利用在编程领域的工作,对通用指令进化做了编程领域改造。进化框架非常直观,包含一些方法和一个问题:用 GPT3.5 做的数据生成。进化方法有几种,1. 增加约束项 2. 具体化某个约束 3. 要求增加题目的推理步骤 4. 提供一段错误代码误导模型 5. 增加时空复杂度要求。

2025-06-30 11:57:30 375

原创 大模型岗做的六个工作

智能体调用的工具可以使用专门的工具编写;比如可以搭建一个MCP服务,实现天气获取的函数功能,这样在工作流中就可以调用实现的功能函数完成天气的查询服务。也可以通过编写插件的方式,直接将功能打包成插件安装在dify这样的工作流框架中。

2025-06-24 11:58:36 664

原创 Graph-RAG全面综述:如何用知识图谱+大模型解决信息检索难题?

这篇论文的摘要部分首先肯定了rag作为一个不需要通过训练解决llm的幻觉、领域知识缺乏和信息过时等问题,但是数据库中不同实体之间复杂的关系结构还是采用Graph的方法利用跨实体的结构信息来实现更精确和全面的检索,捕获关系知识并促进更准确的上下文感知响应会更加合理。所以就写了这么一篇综述主要就是将GraphRAG工作流形式化,包括基于图的索引、图引导检索和图增强生成这三大块内容。并对每个阶段的核心技术和方法做了一个介绍。最后还研究了一些下游任务,任务领域、评估方法和工业用例和未来的方向。

2025-06-24 11:51:16 888

原创 我保证!这是全网最简单的Dify部署指南!没有之一

最近打算在dify上搭建智能体,网页版的话有时候会因为网络问题卡顿,所以干脆就直接在本地部署dify。记录一下部署的过程,顺便也能给其他想要部署但是不知道怎么操作的朋友留个操作手册。1.我们在github上把这个项目clone下拉2.下载完之后解压启动 Dify 服务器的最简单方法是通过 docker compose。在终端输入和,查看回复,如出现下方信息则表示安装成功直接在解压文件夹docker的目录的地址前输入cmd➡️回车进入终端根据官方文档执行,出现报错。

2025-06-23 14:43:24 957

原创 检索增强生成(RAG)领域关键数据集综述:分类、挑战与展望

检索增强生成(RAG)通过融合外部知识库与大型语言模型,已成为解决知识密集型自然语言处理(NLP)任务的关键范式。高质量、多样化的数据集是推动RAG技术发展、评估模型能力和揭示其局限性的基石。本文旨在对RAG领域的关键数据集进行一次系统性的梳理与全景分析。我们基于对30篇核心研究论文的分析,提炼并审查了148个相关数据集,并首次提出一个涵盖六大类别的层次化分类体系,即。

2025-06-23 14:02:13 841

原创 搜索智能体RAG落地不佳?UIUC开源s3,仅需2.4k样本,训练快效果好

当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。我们(UIUC & Amazon)提出的。该方法使用名为的奖励函数,衡量搜索器是否真的为生成带来了有效提升。实验表明,s3 在使用仅。

2025-06-18 11:52:00 646

原创 17 种(高级)RAG 技术,可将您的 RAG 应用程序原型转变为生产就绪型解决方案

没有明确的路径可循。这是大量的试错。就像任何其他数据科学用例一样,我们有一组可以使用的工具,尝试找到我们特定问题的解决方案。这就是这些项目最初的乐趣所在。如果有一本静态的食谱可以遵循,那不是很无聊吗?

2025-06-18 11:49:43 245

原创 【建议收藏】AI 智能体(Agent) 定义、分类、技术架构和应用路径

智能体(Agent)是一种能够感知环境、制定决策并采取行动以实现特定目标的AI系统,一般具有记忆、规划、采取行为、使用工具等基本能力,如下图所示,其中规划中有思维链、能进行反思、目标分解。与传统AI系统不同,智能体具有自主性、持续性和适应性,能够在复杂环境中持续学习和优化自身行为。

2025-06-16 14:27:04 1002

原创 北京大学|第十二弹来了!253页《DeepSeek在教育和学术领域的应用场景与案例》,上中下三篇齐发,绝了!

DeepSeek在教育和学术领域的应用场景与案例(上、中、下三篇)》是由北京大学青鸟人工智能研究院、计算机学院元宇宙技术研究所及教育学院学习科学实验室联合发布的深度研讨报告。该文档系统阐述了DeepSeek技术如何重塑教育生态,以“教”与“学”双轨并行为核心,为教育工作者提供从教学设计到学生能力培养的全链路AI赋能方案。文档聚焦「人机协作教育范式」的创新实践:- 提出“逆向课程设计法”等原创方法论,破解AI与教学融合的结构化难题;- 覆盖单学科到跨学科PBL(项目制学习)的智能化教学路径;

2025-06-16 14:06:13 997

原创 bge-base-en-v1.5微调实战!手把手教你打造垂直领域“最强大脑”,让Embedding模型秒变行业专家!

在构建RAG(检索增强生成,Retrieval-Augmented Generation)系统时,想要实现“问有所答、答之有理”,一份高质量的嵌入模型远比你想象的重要。而在一些专业领域,比如医疗、法律或金融,通用嵌入模型往往难以捕捉专业术语的细微差别,检索表现就会大打折扣。此时,嵌入微调(Embedding Fine-tuning)成为提升系统准确率的关键一步。嵌入(Embedding)可以看作是将文本转化为向量的“翻译器”,它把语义关系编码成多维空间中的位置。相似的句子在空间中相距更近,不相似的则更远。

2025-06-13 11:03:32 659

原创 企业级大模型应该选择 Prompt、RAG、微调还是从零训练?——生成式AI最佳实践全指南

生成式AI技术发展迅猛,企业在应用这类技术以解决业务难题时,面临着诸多方案的选择。

2025-06-12 10:21:41 831

原创 大模型+智能体,AI 落地应用的当下和未来

伴随着人工智能技术的飞速发展,AI 大模型与智能体的深度融合正逐渐成为推动产业变革的核心力量。大模型作为“认知引擎”,赋予传统软件系统和硬件设备理解物理世界、生成知识系统和进行推理决策的能力;智能体作为“行动实体”,实现与物理世界的交互和具体任务执行。两者既非简单并列,也非传统的包含关系,而是通过在架构层面的融合互通、在功能上的协同互补,构建起“感知—决策—执行”完整智能闭环,成为人工智能在生产生活各种场景中实现落地应用的关键载体。

2025-06-10 13:48:25 866

原创 拿下36K的AI产品经理offer,他是如何实现职业转型的?

随着人工智能技术的飞速发展,AI产品经理这一职位逐渐成为科技行业的香饽饽。不少技术专业的应届生、技术岗、行业经验资深产品经理纷纷转型AI赛道。很多毕业生/职场人知道AI产品经理却没有深入了解过,看到有朋友转AI方向了,所以自己也想要转AI产品经理。在网上看了很多AI智能体、AI+应用项目等零散知识,然后学习一下武装进简历里,去求职却收不到面试邀约。问题出在哪里呢?说白了就是想转AI产品经理,你要然后个人优势和过往经验选择适合领域进行专业提升,提升匹配度。

2025-06-10 11:51:35 1054

原创 这一篇带你入门大模型微调,大模型微调从入门到精通,收藏这篇就够了!

分解成两个低维度(矩阵运算 m * r * r * n =m* n),上图中数据 x 都要给原来的模型和分解后的模型(的 r 矩阵,也就是 Lora 矩阵) 训练,用的时候要合并。

2025-06-09 22:28:10 1300

原创 小红书开源首个大模型,中文性能碾压DeepSeek

60%*

2025-06-09 21:24:20 857

原创 AI Agents开源工具栈全解析~

一个成功的Agent开发,关键不在于追逐每个热门新工具,而是务实地选择、组合、迭代。希望能给看到这里的小伙伴,提供一个高效率的起点,更快地构建出真正有价值的AI Agent。

2025-06-09 21:16:56 750

原创 大模型面试必看书籍!《百面大模型》,一书打通大模型求职与实战,附PDF!

百面大模型》不是一本简单的面试题集,而是一本融合原理讲解 × 工程实践 × 面试突破的实战型技术参考书:•用真实面试题引导学习路径,建立大模型知识框架•用项目实战拆解技术细节,提升开发与部署能力•用大厂真题沉淀方法论,帮助你从“会答题”走向“能解题”求职通关,只是起点;构建系统技术力,才是你的长期核心竞争力。这本《百面大模型》书已整理并打包好PDF了放这里了↓↓↓↓。

2025-06-05 11:57:59 1303

原创 Agent综述论文火了,10大技术路径一文看尽

研究团队认为,未来,AI Agents的发展将朝着更加自主化、智能化的方向演进。它们不再局限于被动响应,而是能基于上下文和目标主动推理,具备主动智能(Proactive Intelligence)。通过深度集成外部工具(Tool Integration)和因果推理能力(Causal Reasoning),AI Agents可以更高效地处理复杂问题。持续学习(Continuous Learning)机制让它们能不断优化自身表现,而信任与安全(Trust & Safety)机制的完善则确保其输出可靠、无偏见。

2025-06-04 12:05:41 1033

原创 当大模型汲取进化记忆,它离“人性”还有多远?

大语言模型(LLMs)作为由复杂算法和海量数据驱动的产物,会不会“无意中”学会了某些类似人类进化出来的行为模式?这听起来或许有些大胆,但背后的推理其实并不难理解:首先,人类的心理、认知及行为不是随便“凑”出来的。它们是几百万年自然选择的结果,长期受到生存、繁衍、合作、冲突等各种“进化压力”的雕琢与塑造。

2025-06-04 09:45:00 973

原创 Cursor入门:MCP开发调用和项目实战

最近刷了几篇cursor的文章,看到其中一篇文章介绍了几个cursor项目开发案例,突然有种睁眼看世界的感觉。之前对AI Coding的认知还停留在tab补全、自动生成单元测试上,没想到现在已经发展到直接能开发项目了,某种意义上做到了“有嘴就行”。于是试玩了下cursor,并结合了MCP、Rules、Docs等新功能,帮助对cursor不熟的同学快速入门。一、概念Model Context Protocol,模型上下文协议。

2025-06-04 08:15:00 1554

原创 Deepseek R1 0528实测:性能直逼顶尖,普通电脑本地运行全攻略

Deepseek R1 0528 的发布,无疑是开源大模型领域的一个里程碑。它不仅在性能上达到了与国际顶尖闭源模型同场竞技的水平,更重要的是,它坚持开源,并提供了可在消费级硬件上运行的蒸馏版本。

2025-06-03 22:07:50 1242

原创 大模型入门实战教程:快速掌握AI基础知识

在掌握机器学习之前,理解支撑这些算法的基本数学概念非常重要。:这是理解许多算法(特别是深度学习算法)的关键。主要概念包括向量、矩阵、行列式、特征值和特征向量、向量空间以及线性变换。:许多机器学习算法涉及到连续函数的优化,这需要理解导数、积分、极限和级数。多变量微积分以及梯度的概念也很重要。:这些知识对于理解模型如何从数据中学习并进行预测至关重要。主要概念包括概率理论、随机变量、概率分布、期望、方差、协方差、相关性、假设检验、置信区间、最大似然估计和贝叶斯推断。

2025-05-31 07:45:00 1699

原创 人人都能搭建!零代码搭建个人RAG知识库

上面就是一个简单的利用Coze,不需要写任何一行代码就可以实现简单的个人知识库,这对于普通人来说是极大便捷的。当然它还有其他功能,通过添加插件可以实现“网页文章提取”、“ppt生成”、“图片生成”等等的功能,感兴趣的读者都可以去尝试一下,打造一个属于自己的AI小助理。

2025-05-28 11:40:30 589

原创 大模型基础:基本概念、Prompt、RAG、Agent及多模态(非常详细)零基础入门到精通,收藏这一篇就够了

随着大模型的迅猛发展,LLM 作为人工智能的核心力量,正以前所未有的方式重塑着我们的生活、学习和工作。无论是智能语音助手、自动驾驶汽车,还是智能决策系统,大模型都是幕后英雄,让这些看似不可思议的事情变为可能。1. LLM基础知识3. RAG的应用4. Agent的应用5. 多模态模型1. LLM基础知识1.1 LLM基本概念从字面意思来讲,LLM 是 Large Language Model 这三个单词的首字母缩写,意为大语言模型。

2025-05-28 11:24:13 974

原创 北京大学|第十弹来了!30页全解析《AI工具深度测评与选型指南-副本01 Lovart》,Lovart到底是何方神圣?

AI工具深度测评与选型指南 v1.0-副本01 Lovart》是由北京大学AI肖睿团队联合北大青鸟人工智能研究院、北大计算机学院及北大教育学院学习科学实验室共同编写的专业指南。该文档聚焦全球首个设计领域AI Agent——Lovart,通过深度测评与实践指导,系统解析其核心功能、操作流程及行业应用价值,旨在帮助设计师、创意工作者及非专业用户高效掌握这一工具,探索AI赋能设计的新范式。本指南共30页,涵盖四大核心章节,内容兼具理论与实操性,具体章节简介如下:\1. 初探Lovart:开启智能设计新纪元。

2025-05-27 18:10:22 928

原创 技术思考:小尺寸+两阶段式多模态文档解析模型Dolphin思路评析及PP-OCRv5更新

先来看看文档智能相关进展,在及技术路线上,也有一些新的玩法。比如,思路,效果实测并不理想,尤其是带图片的文档,公式解析和复杂表格解析一般、OCR幻觉比较严重。。这一类(Nougat、Kosmos-2.5、Vary、Fox、GOT、olmOCR、SmolDocling、Mistral-OCR)的好些,例如ppocr更新了5.0版本,传统方案更踏实。顺着说第二件事,就是说下ppocr更新的5.0版本发生的变化,以及通过一个OCR-Reason的评测来看看多模态处理文档OCR任务的能力。抓住。

2025-05-24 14:03:47 757

原创 GPT-4.1 上线 ChatGPT,新版 Claude 祭出“极限推理”

今日凌晨,OpenAI 宣布 GPT-4.1 可以直接在 ChatGPT 中使用!官方表示,GPT-4.1 是一款专门针对编码任务和指令执行的模型,推理效率非常高,是 o3 和 o4-mini 的绝佳替代品。早在上个月,OpenAI 就专为开发者推出了 GPT-4.1 系列新模型:GPT-4.1、GPT-4.1 mini 和 GPT-4.1 nano。只不过,GPT-4.1 刚推出时,仅通过API向开发者开放。而现在,它在 ChatGPT 中就直接可用了。全员免费!

2025-05-16 11:58:23 1006

原创 【开源项目】常见的金融领域开源大模型整理

在金融行业数字化转型的浪潮中,大语言模型(LLM)正逐步成为智能投研、风险控制、合规管理等场景的核心工具。面对金融文本的高专业性、数据敏感性和逻辑复杂性,开源社区涌现出一批针对金融场景优化的模型框架。

2025-05-15 15:05:18 748

原创 从字节、百川、Bespoke Labs 3个大模型项目,看RL驱动下的Agent技术趋势

这三篇论文思路一致,内化工具调用,用最简单的奖励信号(只看最终结果对错)来驱动强化学习,让模型自己决定什么时候调用工具、调用哪个工具,以及怎样用工具返回的信息。这种方法不依赖于人工示范或精细的中间步骤奖励,反而更有效地避免了模型reward hacking的现象出现。Less is More for Reward Design,是目前的reward一大趋势,这样训练比较容易训练稳定,不容易被hack。但是单一的结果reward会变得太稀疏、太延迟,训练效率低,这也是目前的一些问题。

2025-05-15 12:08:40 1060

原创 Qwen3+QVQ-Max实现一个能吃图片的RAG

这个相似度阈值,你们可以根据需要进行调整,调高一些就代表检索图片更严格。

2025-05-14 11:44:09 1698

原创 给MCP加上RAG,工具准确率提升200%,起飞~

大型语言模型(LLMs)在有效利用越来越多的外部工具(如模型上下文协议(MCP)所定义的工具)方面存在困难,这是由于提示膨胀和选择复杂性造成的。因此引入了RAG-MCP,这是一个检索增强生成框架,通过卸载工具发现来克服这一挑战。论文地址:https://arxiv.org/pdf/2505.03275提示膨胀与 MCP 压力测试框架设计:RAG-MCP框架通过检索增强生成(RAG)技术解决提示膨胀问题。它不将所有工具描述一次性提供给LLM,而是将工具描述存储在外部向量索引中,并在查询时动态检索与用户任务最相

2025-05-13 13:30:00 997

原创 一文了解!MCP 技术生态全面解析:核心组件、工作流程、生命周期

在 AI 领域,模型上下文协议(MCP)的出现,就像是一场及时雨,完美地解决了 AI 模型与外部工具和资源交互的难题,让它们之间的协作变得轻松又自然,彻底打破了数据孤岛的困境,让不同系统之间的互操作性不再是梦想。:MCP 主要有三个核心组件,分别是 MCP 主机、MCP 客户端和 MCP 服务器,它们三个相互配合,让 AI 应用和外部工具、数据源之间能够无缝通信。别担心,针对这些风险,大伙儿也想出了不少好办法。

2025-05-13 08:30:00 1246

原创 一文读懂 MCP——从起源到应用,解锁 AI 的“万能接口”

的出现,为 AI 模型与现实世界的交互打开了一扇大门。它不仅解决了接口碎片化和数据孤岛的问题,还通过标准化和安全机制,让开发者能更高效地构建复杂的 AI 应用。从文件管理到企业自动化,从开发者工作流到物联网,

2025-05-12 14:41:30 732

原创 用Coze工作流搭建小红书爆款书单视频智能体,1小时能干100条~(保姆级教程,有手就干)

应一些宝子的需求,去线下给大家找了几款性价比老高的硬货了,都是干自媒体的必备工具,后面等我的直播给大家薅福利(后期对于想做带货的宝子,怎么找货源、怎么谈单、怎么上架,如有需要,我会专门出一期经验分享,老规矩,滴滴说需求)废话不多说,之前有宝子投票说,可不可以给分享一个做,这不来了,虽迟必到。迟到是有原因的,之前搭建了一个做,但素我发现其工作流节点相当之复杂,数了一下,大概有26个节点,用了2次代码,还有循环结构,我被狠狠折磨了两天,给你们瞅一下。

2025-05-12 09:45:00 1968

原创 Coze(扣子)入门:手把手教你创建第一个智能体应用

500字内描述核心功能。

2025-05-12 07:45:00 2942

原创 Coze智能体案例:自动撰写爆款文案

我计划在本公众号更新一批实用案例,或许大家可以直接能用上,或许会有所启发,进而创建自己的智能体。在Coze平台(https://www.coze.cn)点击左侧的加号(+)创建智能体,输入“人设与回复逻辑”。如果不知道怎么写,可以点小星星,让AI帮你创建。比如输入:“我想创建一个能够写AI爆款文章的智能体”,然后AI就会按照的格式自动创建。创建如下的工作流。其中Information插件是“每日AI热点资讯”。给它一个数字,比如10,它就会列出10条AI领域的热点咨询。

2025-05-10 11:43:45 1058

原创 通义灵码新增智能体+MCP!个人免费用!

近期,通义灵码全新升级:阿里云发布国内首个支持「自主决策+工具链闭环」的编程智能体,!网址:https://lingma.aliyun.com/1️⃣ 通义灵码新增智能体模式,具备自主决策、环境感知、工具使用等能力。2️⃣ 支持国内首个混合推理模型 Qwen3。3️⃣ 全面支持 MCP 能力,深度集成国内最大 MCP 中文社区,涵盖十大热门领域 2400+ MCP 服务。4️⃣ 新增长期记忆能力。

2025-05-10 09:45:00 868

原创 检索增强生成(RAG)技术演化总结!从传统RAG到GraphRAG,再到Agent检索!

所有这些都是为了应对更难的信息查找和推理任务。

2025-05-09 11:57:24 610

原创 《Nature Medicine》| DeepSeek连发两篇顶刊:开源DeepSeek挑战专有大语言模型,引领医疗决策新篇章

在医疗决策领域,。然而,,难以在医疗机构内广泛应用。最新研究《Benchmark evaluation of DeepSeek large language models in clinical decision-making》发表于**《Nature Medicine》**,为这一难题带来了破局之光。研究团队通过125个涵盖常见及罕见疾病的标准化病例,对。结果显示,。这一发现不仅证明了开源LLMs在临床决策中的巨大潜力,更为医疗机构提供了一条既安全又经济的模型训练与实施路径。。

2025-05-09 11:50:06 992

原创 微调Qwen3-1.7b:小模型也能做好猫娘!

模型的回复:说实话,能回答成这样,我也是有一点震惊的!我的猫娘!!!嘿嘿嘿哈!!!01数据集介绍答:呜…主人不要说这种话啦,会让我难过的。就算主人真的走了,我也会一直在这里等你回来的。我会每天早上趴在窗台上,看着主人离开的方向。晚上就蜷缩在主人的枕头旁边,闻着主人留下的味道入睡。主人不在的时候,我会好好照顾自己,不让自己生病。但是…但是我不保证不会偷偷哭鼻子。毕竟我是这么爱你啊,我的主人。除非主人亲口告诉我不要等你了,否则我会永远等着你的。主人要不我们现在就去领养一只小猫吧?这样我就有伴了,也不会那么想

2025-05-08 11:34:58 1130

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除