LangChain 安装与环境搭建保姆级教程,手把手带你调用OpenAI与Ollama本地大模型

一、引言

1、什么是LangChain

如果把 大语言模型(LLM) 比作一个强大的“智能大脑”,那么 LangChain 就像是它的“手和脚”——帮助这个大脑连接外部世界,完成更复杂的任务。

🌟 LangChain 是什么?

LangChain 是一个 用于构建智能应用的框架,它让大语言模型(如 ChatGPT、Llama、Claude 等)能够更好地记忆、思考、规划,并与各种外部工具(数据库、API、搜索引擎等)进行交互。

🚀 为什么要用 LangChain?

单独使用 ChatGPT,你只能进行简单的对话;但如果你想让 AI 变得更智能,比如:

记住你上次的聊天记录(记忆能力)

访问数据库查询信息(数据能力)

自动执行任务,比如帮你查天气、发邮件(行动能力)

进行复杂的推理,比如分步规划解决问题(思考能力)
在这里插入图片描述

在这里插入图片描述

3、LangChain应用场景

LangChain 让大语言模型(LLM)不再只是一个“聊天机器人”,而是一个能执行任务、调用工具、与外部世界交互的 智能 AI 助手。

1️⃣ 智能问答系统(企业知识库 / 客服机器人) 🏢💬

📌 场景:
公司有大量文档(如产品手册、政策文件、FAQ),用户或员工想快速查询答案。

💡 LangChain 解决方案:

向量数据库(如 FAISS、Chroma)存储企业文档,LangChain 通过 RAG(检索增强生成) 获取精准答案。

结合 Memory 记忆,客服机器人可以记住用户的上下文对话,提高体验。

✅ 应用示例:

企业内部 FAQ 查询助手

电商智能客服(解答订单、物流、退货问题)

IT 技术支持(帮助用户解决软件或硬件问题)

2️⃣ 智能搜索 & 文档分析 📖🔍

📌 场景:
需要在海量文档、PDF、数据库中查找信息,并进行分析总结。

💡 LangChain 解决方案:

结合向量数据库,支持模糊匹配搜索(即使问题表述不完全一致)。

支持多模态,不仅能查文本,还能处理表格、代码、图片等数据。

结合 LLM 进行摘要,快速提炼关键信息。

✅ 应用示例:

法律助手(快速查找法规、案例)

学术搜索(从大量论文中提炼关键信息)

金融数据分析(从财报中提取核心指标)

3️⃣ 智能运维(AIOps) 🖥️⚙️

📌 场景:
运维工程师需要随时监控服务器状态,发现异常并快速处理。

💡 LangChain 解决方案:

结合 Agent 代理,让 AI 根据指令选择执行不同任务(如查看 CPU 使用率、磁盘空间、网络流量)。

结合 API 工具,让 AI 直接调用 Prometheus、Grafana、Elasticsearch 进行监控。

自动异常检测 & 预警,AI 主动发现异常并给出建议。

✅ 应用示例:

服务器健康检查(比如:“帮我看看服务器 192.168.1.1 运行状态”)

日志分析(查找系统日志、过滤特定错误)

自动化运维(执行运维任务,如重启某个服务)

在这里插入图片描述

二、安装前准备

1、硬件与系统要求
硬件:
CPU:>4C
内存:>8G
硬盘:最好使用SSD,机械硬盘也
系统:Win10/Win11
2、依赖项
python版本:3.12
pip版本:最新版(示例版本为 25.0.1)
编辑器:PyCharm

三、LangChain 安装

1、pip 安装 LangChain
创建虚拟环境(可选)

python -m venv langchain_env
source langchain_env/bin/activate  # Mac/Linux
langchain_env\Scripts\activate     # Windows

使用 pip 安装:

pip install langchain

验证安装

import langchain
print(langchain.__version__)  # 显示 LangChain 版本

如果成功输出版本号,说明安装完成 ✅。

在这里插入图片描述

2、安装OpenAI API 相关依赖
运行以下命令安装 OpenAI 官方 SDK 及相关库:

pip install openai tiktoken langchain-openai langchain-ollama

openai:用于调用 OpenAI API(GPT-4、GPT-3.5)。

tiktoken:用于优化 Token 计算,提高处理效率。

3、安装本地 LLM Ollama(可选)
下载安装包,Download Ollama on Windows

下载完成后,直接点击下一步安装

然后拉取大模型到本地,这里拉取的是 deepseek-r1:32b

ollama pull deepseek-r1:32b

拉取后查看版本信息

ollama list

四、环境配置

1、获取OpenAI Key
我们没有办法直接访问到OpenAI,所以这里使用香港代理,大家注册一个账户,然后登录,购买一个套餐即可,如果是自己学习使用,买一个10元的基本就够用了

GPT4.0 API KEY By OPENAI HK 中转ChatGPT

购买完成后,到控制台获取一个Key
在这里插入图片描述

2、配置环境变量
配置我们刚刚申请的Key

setx OPENAI_BASE_URL "https://api.openai-hk.com/v1"
setx OPENAI_API_KEY "hx-*************************"

五、运行 LangChain 示例代码

1、调用 OpenAI API 进行对话
from openai import OpenAI
import os

初始化 OpenAI 服务。

client = OpenAI()
completion = client.chat.completions.create(
    model="gpt-4o",
    messages=[
        {"role": "system", "content": "assistant"},
        {"role": "user", "content": "你好,你是谁"}
    ]
)
print(completion.choices[0].message)

client = OpenAI():这一行初始化了一个 OpenAI 客户端对象,允许通过该对象与 OpenAI 的 API 进行交互。此时,client 将是一个可以调用 OpenAI API 的对象。
completion = client.chat.completions.create(…):这一行调用了 client 对象的 chat 属性中的 completions.create() 方法,用于向 OpenAI 的 API 发送一个聊天请求,并获取聊天补全(chat completion)结果。具体来说:
model=“gpt-4o”:指定使用的模型是 gpt-4o,即 GPT-4 的一个版本。
messages=[…]:定义了聊天的对话历史,格式为一系列字典对象,每个字典包含 role 和 content 字段。
role 指明消息的角色,可以是 system(系统消息)、user(用户消息)、assistant(助手消息)。
content 是消息的实际内容。
在这个例子中:
第一条消息的角色是 system,内容是 “assistant”,意味着这是一个系统消息,指示助手的身份。
第二条消息的角色是 user,内容是 “你好,你是谁”,即用户发送给助手的消息。在这里插入图片描述

2、调用Ollama本地模型进行对话

from langchain_ollama import OllamaLLM
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate
 
# 初始化本地 LLM
llm = OllamaLLM(base_url="http://192.168.0.99:11434", model="deepseek-r1:32b")
 
# 发送对话请求
response = llm.invoke("介绍一下 LangChain 的核心功能")
print(response)

llm = OllamaLLM(…):这行代码创建了一个 OllamaLLM 对象(即本地语言模型),并将其赋值给变量 llm。该对象用于与本地的 Ollama 模型进行交互。
base_url=“http://192.168.0.99:11434”:这是 Ollama 服务的 URL 地址,指向本地运行的 Ollama 实例。这个地址会被用来发送请求到该服务。你需要将其替换为你的本地 Ollama 服务的 IP 地址和端口号。
model=“deepseek-r1:32b”:指定要使用的具体本地模型。在这里使用的是名为 deepseek-r1:32b 的模型。这个模型可以是任何已安装并运行的本地模型,具体的模型名称取决于本地环境中的配置。
print(response):这行代码将打印模型返回的响应。response 是模型基于输入文本生成的回答,它会被输出到控制台。我们可以看到模型生成的对话内容或文本。

在这里插入图片描述

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值