Anthropic 工程师 Barry Zhang 在 AI Engineer 工作坊上的一个分享 “如何构建有效的 Agent”,其中印象最深的一个观点:Don’t build agents for everything,反过来理解就是别做什么都能干的 Agent,那是我们大模型要干的事情😄
构建有效 Agent 的三大要点:
- 明智选择应用场景,并非所有任务都需要 Agent
- 找到合适的用例后,尽可能长时间地保持系统简单
- 在迭代过程中,尝试从 Agent 的视角思考,理解其局限并提供帮助
Barry 主要负责 Agentic System,演讲内容基于他和 Eric 合著的一篇博文,下面详细总结他们的核心观点,以及对 Agent 系统的演进和未来的思考。
Agent 系统的演进
- 简单功能(Simple Features): 起初是简单的任务,如摘要、分类、提取,这些在几年前看似神奇,现在已成为基础。
- 工作流(Workflows): 随着模型和产品成熟,开始编排多个模型调用,形成预定义的控制流,以牺牲成本和延迟换取更好性能。这被认为是 Agent 系统的前身。
- Agent: 当前阶段,模型能力更强,领域特定的 Agent 开始出现。与工作流不同,Agent 可以根据环境反馈自主决定行动路径,几乎独立运作。
- 未来(猜测): 可能是更通用的单一 Agent,或多 Agent 协作。趋势是赋予系统更多自主权,使其更强大有用,但也伴随着更高的成本、延迟和错误后果。
- 高浓度的主流模型(如 DeepSeek 等)开发交流;
- 资源对接,与 API、云厂商、模型厂商直接交流反馈的机会;
- 好用、有趣的产品/案例,Founder Park 会主动做宣传。
01
*并非所有场景都适合构建 Agent*
*(Don’t build agents for everything)*
Agent 主要用于扩展复杂且有价值的任务,它们成本高、延迟高,不应作为所有用例的直接升级。对于可以清晰映射决策树的任务,显式构建工作流(Workflow)更具成本效益和可控性。
何时构建 Agent 的检查清单:
- **任务复杂度 (Complexity):**Agent 擅长处理模糊的问题空间。如果决策路径清晰,应优先选择工作流。
- 任务价值 (Value): Agent 的探索性行为会消耗大量 token,任务的价值必须能证明其成本。对于预算有限(如每任务 10 美分)或高容量(如客服)场景,工作流可能更合适。
- 关键能力的可行性 (Derisk Critical Capabilities): 需确保 Agent 在关键环节(如编码 Agent 的编写、调试、错误恢复能力)不存在严重瓶颈,否则会显著增加成本和延迟。如有瓶颈,应简化任务范围。
- 错误成本与发现难度 (Cost of Error & Error Discovery): 如果错误代价高昂且难以发现,就很难信任 Agent 自主行动。可以通过限制范围(如只读权限、增加人工干预)来缓解,但这也会限制其扩展性。
编码(Coding)是一个很好的 Agent 用例,因为它任务复杂(从设计文档到 PR)、价值高、现有模型(如 Claude)在许多环节表现良好,且结果易于验证(单元测试、CI)。
02
*保持简单 (Keep it simple)*
*Agent 的核心结构:*
模型(Model)+ 工具(Tools)+ 循环(Loop)在一个环境(Environment)中运作。
*三个关键组成部分:*
\1. 环境 (Environment): Agent 操作所在的系统。
\2. 工具集 (Tools): Agent 采取行动和获取反馈的接口。
\3. 系统提示 (System Prompt): 定义 Agent 的目标、约束和理想行为。
*迭代方法:*
优先构建和迭代这三个基本组件,能获得最高的投资回报率。避免一开始就过度复杂化,这会扼杀迭代速度。优化(如缓存轨迹、并行化工具调用、改进用户界面以增强信任)应在基本行为确定后再进行。
*一致性:*
尽管不同 Agent 应用(编码、搜索、计算机使用)在产品层面、范围和能力上看起来不同,但它们共享几乎相同的简单后端架构。
03
*像 Agent 一样思考*
*(Think like your agents)*
*问题:*
开发者常从自身角度出发,难以理解 Agent 为何会犯看似反常的错误。
*解决方法:*
将自己置于 Agent 的“上下文窗口”中。Agent 在每一步的决策都基于有限的上下文信息(如 10k-20k token)。
*换位思考练习:*
尝试从 Agent 的视角完成任务,体验其局限性(例如,只能看到静态截图,在推理和工具执行期间如同“闭眼”操作)。这有助于发现 Agent 真正需要哪些信息(如屏幕分辨率、推荐操作、限制条件)以避免不必要的探索。
*利用模型自身:*
可以直接询问模型(如 Claude):指令是否模糊?是否理解工具描述?为什么做出某个决策?如何帮助它做出更好的决策?这有助于弥合开发者与 Agent 之间的理解差距。
04
*个人思考与未来展望*
1. 预算感知 Agent (Budget-aware Agents):
需要更好地控制 Agent 的成本和延迟,定义和强制执行时间、金钱、token 预算,以便在生产环境中更广泛地部署。
*2. 自进化工具 (Self-evolving Tools):*
Agent 或许能设计和改进自己的工具(元工具),使其更具通用性,能适应不同用例的需求。
*3. 多 Agent 协作 (Multi-agent Collaboration):*
预计今年年底将在生产中看到更多多 Agent 系统。其优势包括并行化、关注点分离、保护主 Agent 上下文窗口等。关键挑战在于 Agent 间的通信方式,如何实现异步通信,超越当前的用户-助手轮流模式。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈